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Abstract (ro): 

 Since ancient times, the phenomena of nature and society were present in people's daily 

scientific activities, and as society evolved, their importance in the complex system of human 

civilization has steadily increased. The study of nature and society was led scientists to create 

theories and mathematical models that include the main characteristics of abstract forms. For the 

phenomena of nature and society, which are originally evolutionary phenomena (dynamic), the best 

model was found to be the result of specific observation and measurement-based methods, concepts 

at the core of natural and technical sciences. 

 
Figure 1. Position of the measurement and evaluation concepts in relation to natural and technical sciences 

 The main purpose of dynamical systems theory, which we have raised, is to understand the 

long-term behavior of states of a system, most often deterministic. For this study, we follow, from 

concepts specific systems theory, achieving a ranking non-exhaustive patterns or systems, 

depending on the linearity, of their number of input-output variables, of behavior over time or 

taking into account other aspects . Often, such systems involve many variables and are nonlinear. 

Therefore, the study of the behavior of dynamic systems require graphics (modeling and simulation) 

particularly complex that can be easily done with computers from nowadays, some of them will be 

presented in the paper. 

 
Figure 2. Various models and their representation 



Figure 3. Types of physical (real) systems and associated models

 The fundamental feature of dynamic 

existence in time and space of physical systems they set up purely mathematical, as mature fruits of 

researchers thought. 

Figure 4. Overall classification of dynamic mechanical systems

 The study of natural systems and processes 

systems shows mechanical, thermal, electrical

successive stages. 

Figure 5. Specific steps in the systemic analysis methodology and behavior control
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 Considering the stated, the present study shows

which have a significant role in the study of 

theory perspective, among which 

probability, statistical moments of a random process, and the correlation (cross

random signal (process). A special place is

generates a and analyzes the random 

available, namely, MS Excel, respectively Origin.

Figure 6. The normal distribution generation

data sets, using Data Analysis 
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Considering the stated, the present study shows, in addition to the above mentions,

which have a significant role in the study of linear dynamic systems, from the random processes 

, among which we considered the distribution function, density function of 
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A FUNCTIONAL EQUATION OF BUTLER-RASSIAS TYPE AND ITS
HYERS-ULAM STABILITY

MONEA MIHAI

The aim of this paper is to solve a trigonometric functional equation of Butler-Rassias type and
its pexiderized version. Some Hyers-Ulam stability results are also stated.
We will present some results concerning the solution as well as the Hyers-Ulam stability of the

functional equation
f (x+ y) = af (x) cos y + bf (y) cos x;

where f : R! R and a; b are real parameters. Such type of functional equations that de�ne well �
known functions, or classical trigonometric formulas were studied by many authors. Our functional
equation in case a = b = 1 is the equation de�ning the sine function, modulo a real constant c; as
we can see in the sequel. In this case, the following trigonometric formula is obtained:

sin (x+ y) = sin x cos y + cosx sin y:

Following the published works of a number of mathematicians such equations are known as Butler
�Rassias equations.
In the �nal section we study the following pexiderized equation:

f (x+ y) = ag (x) cos y + bh (y) cos x;

where f; g; h : R! R and a; b are any nonzero real numbers.
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The problem of modelling hydraulic servomechanisms as systems with delay is relative new, 

although the delay is objective and real in every system. Probably this situation is given by the 

difficulties that can be encountered in modelling a state delay as derived from specific nonlinearities 

like dry friction in hydraulic cylinder. This direction may seem less natural than the introduction of 

the delay due to a physical law, such as the speed of propagation of a wave, for example, in the case 

of other systems. 

The objective of this paper is to set both of a state of the art in the domain of hydraulic 

servomechanisms and introducing state delays as a technique for simplifying the model in the view 

of a qualitative study of the effects of the delay. The hydraulic servomechanism (mechanical or 

electrical) is an automatic system. Therefore two possible “locations” for the delay are taken into 

account: on state and on control.   

In the specialty literature, in recent years, interest has emerged for assimilating the LuGre 

friction model with a delayed state model. An older approach is due to V. A. Hohlov where the 

nonlinear term from the mathematical model of the servomechanism flow equation is replaced with 

a state-delay. The delay on the control is justified and unavoidable in every automatic system. Often, 

the delay coming from the sensors is studied. The signal sampling, as usual procedure for elaborating 

and implementing control laws, also introduces delays in the systems as well. The compensation 

techniques of the delay effects are multiple and are studied in both time and frequency domain. One 

technique is the Smith predictor.  

The paper ends with a few conclusions regarding the objectives of future studies in the 

mathematical modelling of the hydraulic systems with state and/or control delays. 

 



Stochastic connectivity on almost-Riemannian structures induced by

symmetric polynomials

Teodor Ţurcanu, Constantin Udrişte

1 Short presentation

In this paper we introduce an almost-Riemannian structure which is induced by the exact differential
1−forms ω1 = dx+ dy, ω2 = ydx+ xdy. These are obtained by taking the differential of the elementary
symmetric polynomials, defined on the real plane R2, endowed with the coordinates (x, y). Clearly, the
given 1−forms are functionally dependent on the set {x = y} and functionally independent elsewhere.
The kernels of the 1−forms ω1 and ω2 are generated by the vector fields

X1 = ∂x − ∂y and X2 = x∂x − y∂y,

respectively, which span the distribution D = span{X1, X2}, inducing an almost-Riemannian structure
on R2. The singular locus, i.e., the set of points at which the vector fields X1 and X2 lose their linear
independence, is the set S = {(x, y) ∈ R2| x = y}.

The sub-Riemannian metric g, which turns the pair {X1, X2} into an orthonormal basis at each point
p ∈ R2\S, is given by

g = (gij) =
1

(x− y)2

(
1 + y2 1 + xy
1 + xy 1 + x2

)
, (1)

and clearly is singular on S.
The almost-Riemannian structure defined above resembles, in some aspects, the famous (in the context

of sub-Riemannian geometry) Grushin plane (with the structure induced by the vector fields ∂x, x∂y)
studied by many authors (see for instance [1, 3, 4, 8, 9]) from various viewpoints.

Recall that, given a smooth manifold M , a sub-Riemannian structure on M is specified by a given
distribution D, i.e., a sub-bundle D ⊆ TM , together with a metric g defined on D × D. Most often, the
distribution is specified by a family of vector fields and is non-integrable.

The natural curves on sub-Riemannian manifolds are horizontal (admissible) curves, which are tangent
to horizontal vectors. Thus, a classical problem, in the context of sub-Riemannian geometry, is to join
two arbitrary points by admissible curves. A sufficient condition for this to be possible is that the vector
fields, together with their iterated Lie brackets span the entire tangent space at each point p ∈ M . This
fact is established by the famous Chow-Rashevskii Theorem [10, 14].

It is easily verified that, in this case, the bracket generating condition is satisfied:

[X1, X2] = ∂x + ∂y,

i.e., the Carnot-Carathéodory distance dC between any two points is finite, moreover, the topology induced
by the metric dC is equivalent to the Euclidean topology (Corollary 2.6 [3]).

In this paper we are interested in stochastic analogues of connectivity problems on almost-Riemannian
manifolds. To our knowledge, this problem was raised and motivated, for an arbitrary sub-Riemannian
manifold, in [6, 7]. The problem has been solved for the Grushin plane and its generalizations in [6, 7, 16,
17, 18]. The main result of the paper is Theorem 1.2, which proves the stochastic connectivity property
with respect to the almost-Riemannian structure defined above.
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It is worth mentioning that when passing to a stochastic setting some important adjustments need to
be made. Firstly, the admissible curves are replaced by admissible stochastic processes (defined below).
Secondly, we have to replace the deterministic boundary conditions as well, since probability of an admis-
sible stochastic process, starting at a state P , to reach a fixed state Q, is zero. Thus, we ask for a time at
which the state of the process is in an arbitrarily small neighborhood of the state Q, with the probability
close enough to one.

Any admissible curve c : [0, T ]→ R2, between two fixed points P and Q is described by the boundary
value problem 

dx(t) = [u1(t) + u2(t)x(t)] dt
dy(t) = − [u1(t) + u2(t)y(t)] dt
(x(0), y(0)) = (xP , yP ) , (x(T ), y(T )) = (xQ, yQ) ,

(2)

for some control functions u1, u2 ∈ L1 ([0, T ] ,R). Using a pair of independent Wiener processes
(
W 1

t ,W
2
t

)
,

together with a pair of nonnegative constants (σ1, σ2), the ODE system (2) is stochastically perturbed,
yielding the SDE system {

dx(t) = [u1(t) + u2(t)x(t)] dt+ σ1dW
1
t

dy(t) = − [u1(t) + u2(t)y(t)] dt+ σ2dW
2
t .

(3)

Here the controls ui(s) = ui(s, ω), i = 1, 2 are stochastic processes measurable with respect to the
σ−algebra generated by {Ws∧t, t ≥ 0}, taking values in a Borel set at any instant. The controls which do
not depend on ω are called deterministic or open loop controls. Controls of the form u(s, ω) = u0 (t, ct (ω)),
for some function u0, are called Markov controls. Denote the set of deterministic controls by U1 and,
respectively, the set of Markov controls by U2.

Definition 1.1. A stochastic process ct = (x(t), y(t)) solving the SDE system (3) is called admissible
stochastic process.

Theorem 1.2. Let P (xP , yP ) and Q(xQ, yQ) be two given points on R2 and denote by DC(Q, r) the
Carnot-Carathéodory disk of radius r centered at Q. Then, for any ε ∈ (0, 1) and r > 0, there exist an
admissible stochastic process ct = (x(t), y(t)), and a striking time T <∞, such that

P [cT ∈ DC(Q, r)] ≥ 1− ε, (4)

and x(0) = xP , y(0) = yP , E [y(T )] = yQ, E [x(T )] = xQ.

2 A three dimensional generalization

In the present section we discuss a generalization of previously obtained result in a three-dimensional set-
ting, i.e., on R3 with the usual coordinates (x, y, z). Taking the differential of the symmetric polynomials
s1 = x+ y + z, s2 = xy + yz + zx and s3 = xyz, respectively, we obtain the differential 1−forms

ω1 = dx+ dy + dz
ω2 = (y + z) dx+ (z + x) dy + (x+ y) dz
ω3 = yzdx+ zxdy + xydz.

(5)

Computing the resulting determinant, we see that the 1−forms ωi, i = 1, 2, 3, are functionally dependent
on the set S, defined by the equation (x− y)(y − z)(z − x) = 0, and functionally independent elsewhere
(i.e. regular points). Consider now the vector fields which span locally, at regular points, the pairwise
intersections of kernels of the above 1−forms, i.e.,

kerω2 ∩ kerω3 = span{X1},
kerω3 ∩ kerω1 = span{X2},
kerω1 ∩ kerω2 = span{X3}.

(6)

Our goal in what follows is to prove the stochastic connectivity property with respect to the almost-
Riemannian structure induced on R2 by the distribution D = span{X1, X2, X3}.
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[5] O. Calin, C. Udrişte, Geometric Modeling in Probability and Statistics, Springer, 2014.
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Stability analysis of some equilibrium points in a complex model for cells 

evolution in leukemia 

BORDEI Ana-Maria, BADRALEXI Irina, HALANAY Andrei 

 

The analysis regarding the stability of some equilibrium points in a complex model  considers 

the competition between the populations of healthy and leukemic cells, the asymmetric division 

and the immune system in response to the disease. Delay differential equations are used to 

describe the dynamics of healthy and leukemic cells in case of CML (Chronic Myeloid 

Leukemia). The system consists of 9 delay differential equations, the first equations from 1 to 4 

describe the hematopoietic healthy and leukemic cells evolution, equations 5 – 9 describe the 

evolution of the immune cell populations involved in the immune response against CML. The 

system has four possible types of equilibrium points, denoted E1, E2, E3 and E4. The study is 

focused on the situations E3, when leukemia cells have entirely replaced the healthy ones and 

E4, representing a chronic phase of the disease.  

 

 

 

 

 

 

 
 


