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 II.2. DETERMINATION OF THE ELECTRON SPECIFIC 

CHARGE BY USING LANGMUIR-CHILD'S 3/2 LAW FOR 

VACUUM DIODES  
 

1. Work purpose  

 The study of the current-voltage characteristic for a vacuum diode 

(3/2 law) and the determination of the electron specific charge. 

2. Theory 

 The current-voltage characteristic for a vacuum diode will be 

studied. Experimentally, this characteristic looks like in the graph below. T1 

< T2 < T3 < T4 are the emissive filament (cathode) temperatures. 

Figure 1.  

At low voltages, the characteristics are of the form 
23KUI =      (1)                     

(Langmuir-Child's 3/2 law), the constant K, called perveance, being 

independent on the cathode temperature. At high voltages, we have 
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(Richardson – Dushman's law), where Is is the saturation current, T is the 

cathode temperature and W is the extraction work of the electrons from the 

cathode. A is a physical constant whose unit is [A]SI = [I]⋅[T]-2 = A⋅K-2. The 

term ( )Uaexp , slightly larger than the unit, corresponds to a decrease in 

the extraction work of the electrons when the voltage U is very great. 

 Let us deduce the equation 23KUI =  and compute the perveance. 

We shall suppose that the cathode and the anode are two coaxial electrodes 

of length l and radii RK << RA (see Figure 2). 

Figure 2. 

 At low voltages, the current is much smaller than the saturation value 

and many of the emitted electrons move around the cathode, forming a 

space charge region. We will use cylindrical coordinates (r, θ, z). If l >> RA, 

all the physical quantities varying inside the diode depend on r only.  

 The equations describing the phenomenon are the flow equation 

( ) ( ) ( ) 0<ρ= rvrrj ,    (3) 

the energy conservation equation  

( ) ( )reVrvm
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2
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and the Poisson equation  
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 Due to the diode geometry, we have  
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From the above equations we obtain then  
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Such an equation admits a solution of the form  
α= BrV .       (8) 

Replacing it into the relation (7), we get 
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so that α = 3/2 and 
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The voltage applied to the diode is  
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From (10) and (11) it results that  
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 If the anode radius is not small enough as compared to its length, the 

cylindrical symmetry is not exact and we must introduce a correction factor 
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β2. The non-zero cathode radius correction, 
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included in β2. Therefore, we can write the 3/2 law in the form 
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3. Experimental set-up 

Figure 3. 

The experimental set-up is presented in Figure 3. The potentiometers 

R1 and R2 allow the adjustment of the filament current and of the constant 

anodic voltage, respectively. 

4. Working procedure 

1. By using the rheostat R1, fix through the filament the maximum current 

allowed by the source (usually about 70 mA). 

2. By using the rheostat R2, vary U in steps of 10 V from zero up to the 

superior limit allowed by the source (or by the measuring devices) and 

measure I(U). 

3. Repeat the determination of I(U) for other three values of the filament 

current (for example 65, 60, 55 mA). 
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5. Experimental data processing  

1. Plot on millimeter paper with coordinates I and U3/2, the 4 current-

voltage curves for the 4 filament current values. 

2. Plot the common tangent in the origin of these graphs. This will be a 

straight line of equation I=KexpU3/2. Determine Kexp. (see Fig. 1). If the 

tangents are not common, determine Kexp for each curve. 

3. From Kexp, determine the electron specific charge ( )expme , by using the 

equation 
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The values for l, RA and β are given on the desk. In most cases, l = 0.95 

cm, RA = 0.55 cm and β = 1.1. 

4. Compute the mean value and the standard error for the specific charge. 

 Observation: The electron specific charge is about 1.76·1011 

C/kg. If your result is strongly different from this value, find out the 

reason.  

6. Questions 

1. How many distinct zones does the current-voltage curve of a diode have 

and what laws can be applied to them?  

2. Why doesn't the expression of the 3/2 law contain the temperature of the 

filament, the current of the diode being independent on it? 

3. What fundamental equations are used for deducing the 3/2 law? 

4. What approximations have been made during the computations? 


