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III. CONDENSED MATTER PHYSICS 
 

III.1. THE SKIN EFFECT 
 

1. Work purpose 

The determination of the penetration depth and of the electrical 

conductivity of a metal. 

2. Theory 

 The skin effect takes place when the electromagnetic waves pass 

through a conductor that both absorbs and disperses the electromagnetic 

waves. Due to this effect the current density increases in the surface layers. 

 The absorption is a phenomenon that takes place during the wave 

propagation through a dissipative medium and it means the decrease of the 

wave intensity when the covered distance increases. The metals are 

dissipative media for the electromagnetic waves. Their intensity rapidly 

decreases whit the distance, due to the conduction electrons that, under the 

external alternate field, determine a supplementary electric field inside the 

conductor. This field overlaps with the external one, weakening it. 

 We shall consider the electromagnetic wave intensity I0, at normal 

incidence on the upper surface of the dissipative metal (see Figure 1). We 

have to compute the wave intensity ( )zI  after covering the distance z. We 

quote ( )zdI  the wave intensity decrease after covering the infinitesimal 

distance dz (z, z+dz). This decrease is proportional with both ( )zI  and z: 

( ) ( ) dzzIzdI ⋅α−= ,    (1) 

α  being the absorption coefficient and the minus sign showing that the 

intensity decreases when the absorbent layer increases. 

 To find out the wave intensity at a certain distance z we shall make 

the sum of all the variations ( )zdI . So that we integrate the relation (1) 
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and we obtain: 

( ) ( )zIzI α−= exp0 .     (3) 

Figure 1. 

 The relation (3) shows that in a conductor the intensity of the 

electromagnetic waves exponentially drops with the distance. As 2EI ∝ , 

the amplitude ( )zE  also drops exponentially with the distance: 
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where 0E  is the electric field amplitude of the incident wave and α=δ 1 , 

called penetration depth or skin thickness,, represents the distance over 

which the wave intensity decreases e times. This depth depends on the 

wave frequency ν and on the medium electric and magnetic properties. 

Let us consider an infinite conductor half-space. We choose a 

Cartesian system of coordinate axes, such that the Ox and Oy axes belong 

to the separation plane (z = 0), and the Oz axis is oriented towards the 

interior of the conductor (see Figure 2). The electric field intensity vector 

E
r

 and the conduction current density vector j  are oriented parallel to the 
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Ox axis, and the magnetic field induction vector B
r

 is oriented parallel to 

the Oy axis. Hence ( )0,0,xEE =
r

, ( )0,0,xjj =
r

 and ( )0,,0 BB y=
r

. The 

vector components are functions of the coordinate z and of the time t (these 

components do not vary with the x and y coordinates). The equations that 

govern the skin effect analysis are the equations of the electromagnetic 

wave propagation in substances. 

Figure 2. 

 Electromagnetic wave propagation through a conductor is studied by 

taking into account that the conduction current density is much greater than 

the displacement current density. Neglecting the displacement current, we 

obtain the following equations for the electric and magnetic field 

propagation through the conductors: 
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In our case, we have: 
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We remark that we may write the y component of the magnetic field B
r

 as a 

function of the x component of the electric field E
r

, if we use the Maxwell-

Faraday equation, which can be rewritten as follows: 
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We accept a periodical time variation of the electric field, current density 

and magnetic field such that: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).exp,,exp,,exp, tizBtzBtizjtzjtizEtzE yxx ω=ω=ω=  (8) 

Replacing the expression of xE  from Eq. (8) in Eq. (6), we obtain: 

( ) ( )zEi
dz

zEd
ωσµ=2

2
.    (9) 

Quoting ωσµ= ip2 , the differential equation (9) will become: 

( ) ( )zEp
dz

zEd 2
2

2
= .     (10) 

The general solution of this differential equation is: 

( ) ( ) ( )zpAzpAzE −+= expexp 21 ,    (11) 

where 1A  and 2A  are two integration constants and  

( )
2

1 ωσµ
+=ωσµ=ωσµ= iiip ,     (12) 

where we have used ( ) 21 ii += . The integration constants are 

determined from the following conditions: 

- for ( ) 0, →+∞→ zEz  hence 01 =A ; 

- for ( ) ( ) 200,0 AEEzEz =≡=→ . 

So, the solution (11) will become: 
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If we introduce the constant: 

ωσµ
=δ

2
1 ,        (14) 
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the equation (13) may be written as: 
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Taking into account the equation (8) and  (15) we obtain then: 
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To compute the current density xj  and the magnetic field yB , we use 

similar relations: 
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In these relations, 

πυσµ
=

ωσµ
=δ

4
1

2
1      (19) 

represents the penetration depth of the electromagnetic wave through the 

conductor. Its value varies inversely proportional with the square root of 

both the frequency of the field ν and the metal conductivity σ. Due to this 

relation, we may notice that, simultaneously with the absorption, there is a 

dispersion of the electromagnetic waves. If we increase the frequency ν, the 

penetration depth decreases, meaning that the electromagnetic wave is 

localized at the conductor surface. Due to this effect, the conductors used 

for high frequency currents may look like pipes, to save up material. 

 In Table 1 we find the values of the penetration depth δ for an 

alternate current through a copper conductor, for two frequencies of the 

alternate current: 50 Hz and 5105 ⋅  Hz. Hence the skin thickness δ  

decreases with the increase of the current frequency. 
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Table 1 

Material σ (Ω-1 ·m-1) ν (Hz) δ (mm) 
Copper 5.8 . 107 50 4.67 
Copper 5.8 . 107 5.105 0.0467 

  

In this paper we will determine the penetration depth δ and the 

electrical conductivity σ for various frequency values. An electromagnetic 

wave of a known frequency will fall on a conductor made from one or 

more metallic plates and we will record the amplitude of the alternate 

voltage determined in a receiving coil by the waves that pass through the 

plates. Due to the proportionality between the voltage and the electric field 

intensity, the amplitude of the incident alternate voltage 0U  drops 

exponentially with the distance z and it is described by Eq. (4), meaning: 
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
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so that 

δ
−=
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loglog 0

zUU ,           (21) 

or 

δ
=

2
log 0 z

U
U

.       (22) 

If we draw the dependence of UU 0log  upon z, we will obtain a 

straight line with the slope δ= 21m . By determining the slope we will find 

the penetration depth .21 m=δ  

From the relation (14), we notice that δ is a linear function of ν1  

ν
′=

ν
⋅

πσµ
=δ

11
4

1 m .     (23) 



 123

 Drawing the dependence of δ upon ν1 , and determining the slope 

m’ of the straight line, we will compute the electrical conductivity: 

24
1
m′πµ

=σ ,     (24) 

where 2-7
0 AN104 ⋅⋅π=µ≈µ − . 

3. Experimental set-up  

 The experimental set-up (see Figure 3) is made of a sine oscillation 

generator in the frequency range 10 – 100 kHz with a voltage level of 1000 

mV (Versatester – type E0502), on which we connect an oscillator coil B1 

and a receiving coil B2. Between them we put some metallic sheets (of Cu, 

Al, Sn). By supplying an alternate current (through the coaxial cable C1) to 

the B1 coil, a phenomenon of electromagnetic induction appears, inducing 

an alternate voltage in the receiving coil B2. The induction current 

frequency may be varied, and the induced voltage in B2 is measured with 

the apparatus millivoltmeter (mV). 

Figure 3. 
4. Working procedure 

1. The device is plugged in at 220 V a. c. and the coaxial cable C1 of the 

oscillator coil B1 is connected at the muff “IESIRE 50”. We press the key 
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“10 – 100 kHz”, and the level selector (NIVEL INTERN) is on “1000 

mV”. 

2. With the fine frequency selector “FRECVENTA” we choose a frequency 

(for instance 50 kHz), which is read on the digital display, by choosing 

“INTERN F” from the internal switch. 

3. We determine on the voltmeter the voltage U0 for zero absorber 

thickness, switching the external switch on “EXTERN F”. 

4. We choose a metallic sheet of a known thickness z (zAl = 80 µm, zCu = 40 

µm, zSn = 50 µm), which is placed between the coils B1 and B2, and we 

determine the received voltage on the millivoltmeter, switching the external 

switch on “EXTERN F”. We successively add sheets of the same metal and 

we record for every total thickness z’ = n·z (n being the total number of 

sheets), the received voltage. At least another 4 values of the frequency (for 

instance ν = 60, 70, 80, and 90 kHz) must be used for all thicknesses. The 

obtained data will be filled in Table 2: 

Table 2 

Metal ν (kHz) z (mm) U (mV) U0/U log U0/U δ (mm) 
... ... ... ... ... ... ... 

 

5. We shall repeat the experiment for the other metals too. For each metal, 

we will fill the obtained data in Table 2. 

6. In order to find the electrical conductivity σ of the used materials, after 

data processing, Table 3 is filled in: 

Table 3 

Metal ν (kHz) ν1/2 (kHz1/2) δ (mm) 
... ... ... ... 

 

5. Experimental data processing. 

1. For each metal and fixed frequency ν1, ν2, ..., we draw on the same 
diagram the dependency ( )zfUU =0log , where U0 is the voltage when 



 125

all metallic sheets are removed. Using the relation (22) we obtain, for each 
metal, a family of straight lines for which we will determine their slopes 
m1, m2, ... We compute the penetration depths δ1, δ2, ..., knowing that 

m21=δ . 
2. Using the data from Table 3, another graph is drawn, with the 
dependency of δ upon ν1 . A straight line of slope m’ is obtained for 
each metal and using the relation (24) the electrical conductivities σ are 
determined. 
3. In order to determine the slope of the line axy = , we can apply the least 
square method. Then, the estimated value for the slope is: 
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where n is the number of pairs {xi, yi} experimentally measured. The value 
of the parameter a is affected by the mean square deviation: 
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4. The linear dependence between UU 0log  and z is given by the relation 
δ= 2log 0 zUU . We quote UUy 0log= , zx = , δ= 21a . The 

unknown a must be expressed as a function of its estimated value and mean 
square deviation 

asaa ±= .       (27) 
Similarly 

δ±δ=δ s .      (28) 
Taking into account the relation ( )aδ=δ , we have: 
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5. We apply the same method for the determination of the conductivity σ. 
In this case δ=y , ν=1x  and 

σ±σ=σ s .       (30) 


