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Glossary of notations

N the set of natural numbers
N
∗ the set of non-negative integers

R the set of real numbers
C the set of complex numbers
∼ roughly similar; poorly approximates
≡ identically equal to
e exponential function, ez = exp z
i complex unity, i2 = −1
Re real part of a complex number
Im imaginary part of a complex number
c.c. complex conjugate of the expression in front of c.c.
z∗ complex conjugated of z
arg z the argument of z; the angle in the polar form of the complex number z
v vector v

ex, ey, ez unit vectors in Cartesian coordinate system
〈.〉 average
∫

r
integral over the whole three-dimensional space

Â operator A

Â† adjoint of Â
kB Boltzmann constant
CM centre of mass
lhs left-hand side
rhs right-hand side
n-D n-dimensional
TDSE time-dependent Schrödinger equation
TISE time-independent Schrödinger equation
CSCO complete set of commuting observables
Matlab registered trademark of MathWorks, Inc.





Chapter 1

The experimental foundations

of quantum mechanics

1.1 Useful Equations

Stefan–Boltzmann law

The radiant exitance (energy radiated from a body per unit area per unit
time), M , of a blackbody at temperature T grows as T 4:

M(T ) = σT 4, (1.1)

where σ ≈ 5.67× 10−8 W m−2 K−4 is Stefan–Boltzmann constant.

Stephan–Boltzmann law can be extended to a grey body of emittance ε
as

M(T ) = εσT 4. (1.2)

Wien’s displacement law

Wien’s displacement law states that the wavelength for maximum emis-
sive power from a blackbody is inversely proportional to its absolute temper-
ature,

λmaxT = b. (1.3)

The constant b is called Wien’s displacement constant and its value is b ≈
2.898 × 10−3 mK.
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Rayleigh–Jeans radiation formula

The spectral energy density of a blackbody is

ρν(ν, T ) =
8πν2

c3
kBT, (1.4)

The spectral energy density in terms of wavelength can be derived as

ρλ(λ, T ) =
8π

λ4
kBT. (1.5)

The Rayleigh–Jeans formula agrees with experimental results only at very
long wavelengths at any given temperature.

Planck radiation formulas

The spectral energy density of a blackbody is

ρν(ν, T ) =
8πν2

c3
hν

exp(hν/kBT )− 1
. (1.6)

The spectral energy density in terms of wavelength can be derived as

ρλ(λ, T ) =
8πhc

λ5

1

exp(hc/λkBT )− 1
. (1.7)

The spectral radiant exitance Mλ (emitted power per unit of area and
unit of wavelength) of a blackbody is

Mλ(λ, T ) =
2πhc2

λ5

1

exp(hc/λkBT )− 1
. (1.8)

Einstein equation of the photoelectric effect

(1/2)mv2max = hν −Φ. (1.9)

At the incidence of photons of frequency ν, the stopping voltage of the
photoelectrons is

U0 = (h/e)ν − Φ/e. (1.10)

Planck-Einstein relations

E = hν = ~ω and p = ~k. (1.11)
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Fig. 1.1 In Compton scattering an x-ray
photon of wavelength λ collides with an elec-
tron initially at rest. The photon scattered
in the direction θ has the wavelength λ′ > λ.

Compton effect

Given that λ is the wavelength of the incident photon and λ′ that of the
scattered photon in the direction θ (angle between the direction of incidence
and direction of scattering, see Fig. 1.1), the change in wavelength is

λ′ − λ = λC(1− cos θ), (1.12)

where

λC = h/mc ≈ 2.426 × 10−12 m (m = electron mass) (1.13)

is called Compton wavelength of the electron.

1.2 Questions and problems

1.1 Explain the cooling of Earth surface at night. When is the Earth surface
coldest?

Answer. The Earth emits radiation all the time and receives radiation from the
Sun during the day only. During a clear day, the Earth surface is heated up; it
means that the flux of energy received from the Sun is greater than that emitted
by the Earth. Once the Sun goes down, less and less power is received by the
Earth. The Earth surface begins to cool and during the night the temperature is
contiuously decreasing. The Earth’s surface is coldest in the early morning hours.

1.2 Determine the energy of a photon and the number of photons emitted
per second by a P = 2mW He–Ne laser that operates on the wavelength
λ = 632.8nm. Interpret the results.

Solution. The energy of a photon is

E = h
c

λ
= 3.14× 10−19 J,
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which is a very small energy for the macroscopic world. The appropriate energy
unit at the atomic scale is the electron volt. The energy of a photon emitted by the
He–Ne laser is

E = 3.14× 10−19 J =
3.14× 10−19

1.6× 10−19
eV = 1.96 eV.

The number of photons emitted per second is

P

hc/λ
= 6.37× 1015 photons/s.

The huge number of photons explains why we do not notice the quantum nature of
the electromagnetic field in everyday life: adding or subtracting one photon does
not make a noticeable difference.

1.3 The temperature of a person skin is θskin = 35 ◦C.
(a) Determine the wavelength at which the radiation emitted from the

skin reaches its peak.
(b) Estimate the net loss of power by the body in an environment of

temperature θenvironment = 20 ◦C. The human skin has the emittance ε = 0.98
in infrared and the surface area of a typical person can be estimated as
A = 2m2.

(c) Estimate the net loss of energy during one day. Express the result in
calories by use of the conversion relation 1 cal = 4.184 J.

Solution. (a) By use of Eq. (1.3),

λmax =
b

Tskin

≈ 9.5µm.

This wavelength is in the infrared region of the spectrum.
(b) The power emitted by the body is [see Eq. (1.2)]

Pemitted = εσT 4

skinA ≈ 974W,

while the power absorbed from the environment is

Pabsorbed = εσT 4

environmentA ≈ 819W.

The net outward flow of energy is

P = Pemitted − Pabsorbed ≈ 155W.

(c) The net loss of energy in a time t = 24 × 3 600 s is E = Pt ≈ 3 207 kcal.
The result is an overestimation of the real net loss of energy, because the clothes
we wear contribute to a significant reduction of the skin emittance.
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1.4 Prove that the relation between radiant exitance (emitted power per
unit area) M of a blackbody and the energy density ρ of the blackbody
cavity is

M = (1/4)cρ. (1.14)

Solution. Let us consider a small surface of the body; this can be considered as
plane. Let us denote by A the area. We choose a 3-D Cartesian coordinate system
with the origin O on the emitting surface and the Oz-axis perpendicular to the
surface and directed outward (see figure below).

O

✻
z

✕n

c∆t

❘
A θ

We first write the flux of energy through the surface of area
A inside the solid angle dΩ = sin θ dθ dϕ around the direc-
tion n determined by polar angles θ and ϕ. During the time
interval ∆t, the energy emitted inside the solid angle dΩ is
located inside the cylinder of generatrix paralell to n and
length c∆t. The energy inside this volume is ρAc∆t cos θ
and only the fraction dΩ/4π propagates in the considered
solid angle.

The total energy emitted through the surface of area A in the time interval ∆t
is

∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

ρAc∆t cos θ
sin θ dθ dϕ

4π
=

1

4
cρA∆t.

It follows that the energy emitted in unit time by unit area is

M = (1/4)cρ.

Remark. In case we are interested in the relation between the spectral quantities
Mλ and ρλ, we restrict ourselves to the radiation in the wavelength interval (λ, λ+
dλ). The energy emitted with the wavelength in the specified interval in ∆t is

∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

ρλdλAc∆t cos θ
sin θ dθ dϕ

4π
=

1

4
cρλ dλA∆t.

The energy emitted in unit time through the unit area of surface is

Mλdλ = (1/4)cρλ dλ

from which the relation

Mλ = (1/4)cρλ.

is inferred.
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1.5 (a) Use Eq. (1.6) to determine the radiant energy density ρ(T ) in a
cavity whose walls are kept at the temperature T . Hint :

∫ ∞

0

x3

expx− 1
dx =

π
4

15
.

(b) Use ρ(T ) determined above to deduce the Stefan–Boltzmann law.

Solution. (a)

ρ(T ) =

∫

∞

0

ρν(ν) dν =
8πh

c3

∫

∞

0

ν3

exp(hν/kBT )− 1
dν

=
8πh

c3

(

kBT

h

)4∫ ∞

0

x3

expx− 1
dx =

8π5k4B
15c3h3

T 4 ∝ T 4.

(b) By use of Eq.(1.14) and ρ(T ) from above, we have

M =
1

4
cρ =

2π5k4B
15c2h3

T 4 = σT 4, where σ =
2π5k4B
15c2h3

≈ 5.67× 10−8 Wm−2 K−4

is Stefan–Boltzmann constant.

1.6 Derive Wien’s displacement law from Eq. (1.7).

Solution.

d

dλ
ρλ(λ) =

40πhc

λ6

exp(hc/λkBT )

[exp(hc/λkBT )− 1]2

[

−1 +
1

5

hc

λkBT
+ exp

(

−
hc

λkBT

)]

.

The condition dρλ(λ)/dλ = 0 yields the transcendental equation

1− x/5 = exp(−x),

where the shorthand notation x = hc/λkBT have been used. Besides the trivial
solution x = 0, a positive solution exists, x ≈ 4.965 (see figure below).

✲ x

✻

0 1 2 3 4 5
0

1

← 1− x/5

← exp(−x)

Graphical solution of the equation
1− x/5 = exp(−x).



1.2 Questions and problems 7

The spectral energy density is maximum for the wavelength λmax given by

λmaxT ≈
hc

4.965 kB

≈ 2.898× 10−3 m K.

1.7 Derive the form of the Planck radiation formula in the limit case:
(a) hc/λkBT ≪ 1 (large wavelengths);
(b) hc/λkBT ≫ 1 (small wavelengths).
Interpret the results.

Solution. (a)

ρλ(λ, T ) =
8πhc

λ5

1

exp(hc/λkBT )− 1

=
8πhc

λ5

1
[

1 +
hc

λkBT
+
( hc

λkBT

)2

+ · · ·

]

− 1

.

In the linear approximation of the Taylor series expansion,

ρλ(λ, T ) =
8πhc

λ5

λkBT

hc
=

8π

λ4
kBT,

i.e., Rayleigh–Jeans formula [Eq. (1.5)].
The condition hc/λkBT ≪ 1 is equivalent to hc/λ≪ kBT , i.e., the quantum of

energy hc/λ is much smaller than the thermal energy. The discreteness of cavity
energy is unsignificant and the treatment of thermal radiation is well approximated
by the classical theory.

(b) For hc/λkBT ≫ 1 we have exp(hc/λkBT )≫ 1 and

ρλ(λ, T ) ≈
8πhc

λ5

1

exp(hc/λkBT )
=

8πhc

λ5
exp(−hc/λkBT ).

In this case hc/λ ≫ kBT and the discreteness of the cavity energy is obvious;
the classical theory gives completely wrong predictions.

1.8 A zinc plate is irradiated at a distance R = 1m from a mercury lamp
that emits through a spectral filter P = 1W radiation power at λ = 250nm.
The penetration depth of the radiation is approximately equal to the ra-
diation wavelength. In the classical model of radiation-matter interaction,
the radiation energy is equally shared by all free electrons. Calculate the
minimum irradiation time for an electron to accumulate sufficient energy to
escape from the metal. Free electron density in zinc is n = 1029 m−3 and the
work function is Φ = 4 eV.
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Solution. In a time interval t the plate of area A receives the energy

A

4πR2
Pt

and this is accumulated by the free electrons in the volume Aλ. On the condition
that an electron acquires the energy Φ,

A

4πR2
Pt = nAλΦ.

The minimum irradiation time is

t =
4πR2nλΦ

P
≈ 2.0× 105 s

in strong contradiction to the experimental results.

1.9 When a metal surface is irradiated with light of different wavelengths
from a mercury lamp, the stopping voltages of the photoelectrons are mea-
sured as shown in the following table.

λ/nm 365 405 436 546 579
U/V 1.41 1.09 0.85 0.29 0.15

Plot the stopping voltage versus the frequency of the light and use the
graph to determine the threshold frequency, the threshold wavelength, the
work function of the metal, and the quotient h/e.

Solution. The dependence of the stopping voltage on the frequency of light is given
by Eq. (1.10). The following Matlab program determines all required physical
quantities.

clc;close all;clear all

%Photoelectric effect: the use of experimental data for

%determination of nu_0, lambda_0, Phi, and h/e

c=299792458; % m/s

lambda=[365 405 436 546 579]*1e-9; % m

U=[1.41 1.09 0.85 0.29 0.15]; % V

nu=c./lambda; % Hz

nu_significand=nu*1e-14;

plot(nu_significand,U,’o’);hold on

xlabel(’$\nu/(10^{14} \rm{Hz})$’,’Interpreter’,’latex’)

ylabel(’$U/\rm{V}$’,’Interpreter’,’latex’)

p=polyfit(nu_significand,U,1);

nu_0=-p(2)/p(1)*1e14 % Hz

lambda_0=c/nu_0 % m
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Phi_over_e=-p(2) % V

h_over_e=p(1)*1e-14 % Vs

plot([nu_0 1.05*max(nu)]*1e-14,...

polyval(p,[nu_0 1.05*max(nu)]*1e-14))

set(gca,’XLim’,[4.5 8.5],’XTick’,4.5:0.5:8.5,’XTickLabel’,...

[’4.5’;’5.0’;’5.5’;’6.0’;’6.5’;’7.0’;’7.5’;’8.0’;’8.5’],...

’YLim’,[0 1.6],’YTick’,0:0.2:1.6,’YTickLabel’,...

[’0.0’;’0.2’;’0.4’;’0.6’;’0.8’;’1.0’;’1.2’;’1.4’;’1.6’])

After running the program, the sought quantities are displayed in the Matlab

Command Window: ν0 ≈ 4.81 × 1014 Hz, λ0 ≈ 624 nm, Φ ≈ 1.99 eV, and h/e ≈
4.15× 10−15 Vs. The graph is shown as ‘Figure 1’ window and is presented below.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ν/(1014 Hz)

U
/
V

1.10 Blue light of wavelength λ = 456nm and power P = 1mW is incident
on a photosensitive surface of cesium. The electron work function of cesium
is Φ = 1.95 eV.

(a) Determine the maximum velocity of the emitted electrons and the
stopping voltage.

(b) If the quantum efficiency of the surface is η = 0.5%, determine the
magnitude of the photocurrent. The quantum efficiency is defined as the
ratio of the number of photoelectrons to that of incident photons.

Solution. (a) The threshold wavelength of the photoelectric effect for cesium is

λ0 = hc/Φ ≈ 636 nm < λ,

so electrons are extracted from cesium.
To calculate the maximum velocity of the photoelectrons, we make use of

Eq. (1.9), where ν = c/λ. We get vmax ≈ 5.2 × 105 m s−1. As vmax/c ≪ 1, the
nonrelativistic expression of the kinetic energy proves to be justified.
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The stopping voltage is given by Eq. (1.10), where ν = c/λ. We get U0 ≈ 0.77V.
(b) The number of electrons extracted in unit time is

n = η
P

hc/λ

forming a current of magnitude

I = ne = η
λeP

hc
≈ 1.8µA.

1.11 Prove that a free electron cannot absorb a photon.

Solution. The collision between the photon and the electron is investigated in
their centre of mass reference frame, i.e., the frame of reference in which the total
momentum is zero. The hypothetical process is presented below. Here, p denote
the magnitude of the momentum of the electron and photon.

::::
✲
p

−✛p

Before absorption

−

After absorption

Let us denote by me the electron mass. The initial energy of the system is
pc +

√

m2
ec

4 + p2c2, while the energy of the final state is mec
2. It is clear that

conservation of energy is violated, so the process cannot occur.
Remark. An electron participating in the photoelectric effect is not free, but

bound to either an atom, molecule, or a solid. The electron and the heavy matter
to which the electron is coupled share the energy and momentum absorbed and it is
always possible to satisfy both momentum and energy conservation. However, this
heavy matter carries only a very small fraction of the photon energy, so that it is
usually not considered at all.

1.12 In a television tube, electrons are accelerated by a potential difference
of 25 kV. Determine the minimum wavelength of the x-rays produced when
the electrons are stopped at the screen.

Solution. The energy acquired by an electron accelerated by the potential differ-
ence U = 25 kV is E = eU . This energy may be radiated as a result of electron
stopping; the minimum wavelength radiated is obtained when all energy is radiated
as a single photon:

λmin = hc/E = hc/eU ≈ 5.0× 10−11 m = 50 pm.

Almost all of this radiation is blocked by the thick leaded glass in the screen.
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1.13 X-rays of wavelength 70.7 pm are scattered from a graphite block.
(a) Determine the energy of a photon.
(b) Determine the shift in the wavelength for radiation leaving the block

at an angle of 90◦ from the direction of the incident beam.
(c) Determine the direction of maximum shift in wavelength and the

magnitude of this shift.
(d) Determine the maximum shift in the wavelength for radiation scat-

tered by an electron tightly bound to its carbon atom.

Solution. (a) E = hc/λ ≈ 2.81× 10−15 J ≈ 1.75× 104 eV.
Remark. This energy is several orders of magnitude larger than the binding

energy of the outer carbon electrons, so treating these electrons as free particles in
the Compton effect is a good approximation.

(b) By making use of Eq. (1.12), we get ∆λ = λ′ − λ ≈ 2.43 pm.
(c) The direction of maximum shift in wavelength is θ = π, i.e., the photon is

scattered backwards; (∆λ)max = 2λC ≈ 4.85 pm.
(d) The photon collides with the entire atom whose mass is 12 u. Compton

wavelength of the carbon atom is 1.11×10−16 m. The maximum change of the
wavelength due to scattering is 2.22×10−16 m, too small to be measured.

1.14 In a Compton scattering experiment (see Fig. 1.1) a photon of energy
E is scattered by a stationary electron through an angle θ.

(a) Determine the angle ϕ between the direction of the recoiling electron
and that of the incident photon.

(b) Determine the kinetic energy of the recoiling electron.

Solution. (a) Given that p is the momentum of the incident photon and p′ and pe

the momenta of scattered photon and electron after the collision, the conservation
of momentum requires that

pe = p− p′.

This relation is projected on two perpendicular axes shown in the figure:

pe cosϕ =
h

λ
−

h

λ′
cos θ,

pe sinϕ =
h

λ′
sin θ.

Dividing side by side the two equations we get

cotϕ =
λ′

λ sin θ
− cot θ.

By use of Eq. (1.12), the angle ϕ is given by

cotϕ =

(

1 +
λC

λ

)

tan
θ

2
=

(

1 +
E

mc2

)

tan
θ

2
.
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✲ x

✻

y

✯p
′

✲p

❘pe

θ

ϕ

Momentum conservation in the Compton effect
and the choice of a xOy coordinate system.

(b) The kinetic energy of the recoiling electron is equal to the energy loss of the
photon:

T =
hc

λ
−

hc

λ′
=

hc

λ

λC(1− cos θ)

λ+ λC(1− cos θ)
=

(E/mc2)(1 − cos θ)

1 + (E/mc2)(1− cos θ)
E.

1.15 An atom in an excited state spontaneously de-excite to a lower energy
state. Let us denote by A the Einstein coefficient for the spontaneous emis-
sion betweend to states. Justify the name of lifetime of the excited state for
the time interval defined by τ = 1/A.

Solution. We calculate the average time spent by the atom before de-excitation.
Suppose at t = 0 there are N(0) atoms in the upper energy level. During the time
interval (t− dt/2, t+ dt/2), a number

AN(t) dt = AN(0) exp(−At) dt

of atoms de-excite. These atoms have spent a time t in the upper energy level.
Thus, the probability that an atom remains in the upper energy level a time t is

AN(t) dt

N(0)
= A exp(−At) dt.

The average time spent by an atom in the upper energy level is
∫

∞

0

tA exp(−At) dt = −t exp(−At)
∣

∣

∞

0
+

∫

∞

0

exp(−At) dt =
1

A
= τ.



Appendix A

Fundamental physical

constants

The tables below give values of some basic physical constants recom-
mended for international use by the Committee on Data for Science and
Technology (CODATA).

Table A.1 An abbreviated list of the 2014 CODATA recom-
mended values of the fundamental constants of physics and chem-
istry. The standard uncertainty in the last two digits is given in
parenthesis.

Quantity Symbol Value
speed of light in vacuum c, c0 299 792 458 m s−1 (exact)
magnetic constant µ0 4π× 10−7 NA−2

electric constant 1/µ0c
2 ǫ0 8.854 187 817...× 10−12 Fm−1

Newtonian constant of gravitation G 6.674 08(31)× 10−11 m3 kg−1 s−2

Avogadro constant NA 6.022 140 857(74)× 1023 mol−1

molar gas constant R 8.314 4598(48) J mol−1K−1

Boltzmann constant R/NA k 1.380 648 52(79)× 10−23 J K−1

8.617 3303(50)× 10−5 eVK−1

molar volume of ideal gas
(T = 273.15K, p = 101.325 kPa) Vm 22.413 962(13)× 10−3 m3 mol−1

Loschmidt constant
(T = 273.15K, p = 101.325 kPa) n0 2.686 7811(15)× 1025 m−3

elementary charge e 1.602 176 6208(98)× 10−19 C
Faraday constant NAe F 96 485.332 89(59)C mol−1

Planck constant h 6.626 070 040(81)× 10−34 J s
4.135 667 662(25)× 10−15 eV s
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Table A.1 (Continued)
Quantity Symbol Value
h/2π ~ 1.054 571 800(13)× 10−34 J s

6.582 119 514(40)× 10−16 eV s
electron mass me 9.109 383 56(11)× 10−31 kg

energy equivalent in MeV mec
2 0.510 998 9461(31)MeV

electron charge to mass quotient −e/me −1.758 820 024(11)× 1011 C kg−1

proton mass mp 1.672 621 898(21)× 10−27 kg
mp = Ar(p) u 1.007 276 466 879(91) u
energy equivalent in MeV mpc

2 938.272 0813(58)MeV
neutron mass mn 1.674 927 471(21)× 10−27 kg
mn = Ar(n) u 1.008 664 915 88(49) u
energy equivalent in MeV mnc

2 939.565 4133(58)MeV
proton-electron mass ratio mp/me 1836.152 673 89(17)
fine-structure constant e2/4πǫ0~c α 7.297 352 5664(17)× 10−3

inverse fine-structure constant 1/α 137.035 999 139(31)
Rydberg constant α2mec/2h R∞ 10 973 731.568 508(65)m−1

R∞hc in eV 13.605 693 009(84) eV
Wien displacement law constants
b = λmaxT b 2.897 7729(17)× 10−3 m K
b′ = νmax/T b′ 5.878 9238(34)× 1010 Hz K−1

Stefan–Boltzmann constant
(π2/60)k4/~3c2 σ 5.670 367(13)× 10−8 Wm−2 K−4

Bohr radius α/4πR∞= 4πǫ0~
2/mee

2 a0 0.529 177 210 67(12)× 10−10 m
Compton wavelength h/mec λC 2.426 310 2367(11)× 10−12 m
classical electron radius α2a0 re 2.817 940 3227(19)× 10−15 m
Bohr magneton e~/2me µB 927.400 9994(57)× 10−26 J T−1

5.788 381 8012(26)× 10−5 eVT−1

nuclear magneton e~/2mp µN 5.050 783 699(31)× 10−27 J T−1

3.152 451 2550(15)× 10−8 eVT−1
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Table A.2 The values in SI units of some non-SI units.

Name of unit Symbol Value in SI units
ångström Å 0.1 nm = 100 pm = 10−10 m
electron volta: (e/C) J eV 1.602 176 6208(98)× 10−19 J
(unified) atomic mass constantb 1 u = mu

= (1/12)m(12C) = 10−3 kg mol−1/NA u 1.660 539 040(20)× 10−27 kg
aThe electronvolt is the kinetic energy acquired by an electron in passing through
a potential difference of one volt in vacuum.
bThe unified atomic mass constant is equal to 1/12 times the mass of a free carbon
12 atom, at rest and in its ground state.


