## Tutorial 5

1) The following four waves are sent along strings with the same linear densities ( $x$ is in meters and t is in seconds). Rank the waves according to (a) their wave speed and (b) the tension in the strings along which they travel, greatest first: 1) $\left.y_{1}=(3 \mathrm{~mm}) \sin (x-3 t) ; 2\right)$ $\left.y_{2}=(6 \mathrm{~mm}) \sin (2 x-t) ; 3\right) y_{3}=(1 \mathrm{~mm}) \sin (4 x-t) ; y_{4}=(2 \mathrm{~mm}) \sin (x-2 t)$
2) A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.170 s . What are the (a) period and (b) frequency? (c) The wavelength is 1.40 m ; what is the wave speed?
3) A transverse sinusoidal wave is moving along a string in the positive direction of an $x$ axis with a speed of $80 \mathrm{~m} / \mathrm{s}$. At $\mathrm{t}=0$, the string particle at $\mathrm{x}=0$ has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at $x=0$ is $16 \mathrm{~m} / \mathrm{s}$. (a) What is the frequency of the wave? (b) What is the wavelength of the wave? If $y(x, t)=y_{\mathrm{m}} \sin (k x \pm \omega t+\Phi)$ is the form of the wave equation, what are (c) $y_{m}$; (d) $k$, (e) $\omega$, (f) $\Phi$, and (g) the correct choice of sign in front of $\omega$ ?
4) The equation of a transverse wave traveling along a very long string is $y(x, t)=6.0 \sin (0.020 \pi x+4 \pi t)$, where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave, and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at $\mathrm{x}=3.5 \mathrm{~cm}$ when $\mathrm{t}=0.26$ s ?
5) The function $y(x, t)=(15.0 \mathrm{~cm}) \cos (0.020 \pi x-15 \pi t)$, with $x$ in meters and $t$ in seconds, describes a wave on a taut string. What is the transverse speed for a point on the string at an instant when that point has the displacement $y=+12 \mathrm{~cm}$ ?
6) A sinusoidal wave of frequency 500 Hz has a speed of $350 \mathrm{~m} / \mathrm{s}$. (a) How far apart are two points that differ in phase by $\pi / 3 \mathrm{rad}$ ? (b) What is the phase difference between two displacements at a certain point at times 1.00 ms apart?
7) The equation of a transverse wave on a string is $y(x, t)=(2 \mathrm{~mm}) \sin \left(\left(20 \mathrm{~m}^{-1}\right) x+\left(30 \mathrm{~s}^{-1}\right) t\right)$. The tension in the string is 15 N . (a) What is the wave speed? (b) Find the linear density of this string in grams per meter.
8) A stretched string has a mass per unit length of $5.00 \mathrm{~g} / \mathrm{cm}$ and a tension of 10.0 N . A sinusoidal wave on this string has an amplitude of 0.12 mm and a frequency of 100 Hz and is traveling in the negative direction of an x axis. If the wave equation is of the form $y(x, t)=y_{\mathrm{m}} \sin (k x \pm \omega t)$, what are (a) $y_{\mathrm{m}}$ (b) $k$, (c) $\omega$, and (d) the correct choice of sign in front of $\omega$ ?
