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Thermodynamics and Statistical Physics 

 

A. THERMODYNAMICS 

 

1. Definitions. Important results 

 

TD studies systems, i.e. finite parts of the Universe. A system is separated from the 

outside by a surface, actual or just thought. Examples.  

Types of enclosures:  

 - adiabatic walls: not permeable to heat transfer 

 - diathermal walls: permeable to heat transfer 

 - fixed walls: constant volume 

 - porous membrane: fixed volume, variable no. of particles 

An isolated system does not exchange with the exterior neither heat, nor work or particles. 

It has fixed, adiabatic, non-permeable walls 

The system is described by state parameters. They could be : 

 - external, depending only on external bodies (systems), e.g. volume, fields (electric, 

magnetic, gravitational) 

 - internal, depending not only on external systems (pessure, temperature) 

Another classification: 

 - intensive, not depending on the mass (or volume, or no. of particles); ex. temperature, 

pressure 

 - extensive, depending on the mass (or volume, or no. of particles); ex. internal energy, 

entropy. 

Equilibrium states 

State parameters are perfectly defined only in equilibrium states, states when the 

parameters are constant and there are no stationary fluxes.  

Modification of state parameters, hence of the state is called process. If the pocess is slow 

enough so as to assume that in each moment the system is in a stationary state the process is 

cuasistatic. Otherwise it is non-static. We study only cuasistatic processes: isotherm, isochor, 

isobar, adiabatic. 

 

Comparison between TD and Statistical Physics (SP)..... 
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2. TD principles 

 

2.1. General principle 

An isolated system always attains equilibrium. The state changes only by varying 

external parameters. Bigger the system, longer the time to attain equilibrium.  

 

2.2 Zeroth law of TD  

(It introduces temperature as a state parameter) 

Related to the sensations of cold and hot. Temperature and heat. 

Essential characteristic: its tendency to equalization, due t a net flow of energy called heat 

flow. 

 

The equilibrium relation 

Two systems A and B isolated from the outside and from eah-other: 

 

 

 

They are in equilibrium states ΣA and ΣB. 

Eliminate the adiabatic wall between them. 

If their states remain the same, we say that 

the two systems were in equilibrium, more 

precisely their states are in equilibrium. 

We write ΣA E ΣB.  

Suppose now the situation below 

 

ΣA E ΣB and ΣB E ΣC.  

There is overwhelming experimental proof 

that ΣA E ΣB. The equilibrium relation is 

transitive. It is also idempotent, ΣA E ΣA and 

reflexive, ΣA E ΣA. Hence the "E" relation is 

an equivalence relation. 

It splits all the equilibrium states in classes of equivalent states. Two different classes 

have no common elements. All the equilibrium states of all the systems which are in 

equilibrium are characterized by a common parameter, the temperature. They "have" the same 

temperature. Denote the external parameters by ai and the internal ones by Ai. The (equilibrium) 

states are completely described by the external parameters and the temperature T. The relations 

are called the thermal equations of states: 
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    T,a...,,a,aAA nii 21     (1) 

 

Example: perfect gaz  V/RTp  ,   a=V,  a= p  (see later) 

The transitivity of the equilibrieum relation allows to measure temperatures with a 

thermometer. 

 

2.3. The first principle of Thermodynamics 

This is the principle of the conservation of energy fpr macroscopic bodies. 

Conside first an isolated system. Following the general principle of TD one can change 

its state only by changing the external parameters, i.e. by doing work on it. Experiments show 

that to change the system state from a specific equilibrium state Σ1 to another definite 

equilibrium state Σ2 the same amount of work is necessary, irrespective of the mechanism used 

to perform this work, or of the transitional state through the system passes. We define a function 

of state U, such that the work done on the system is equal to the change of this quantity:  

 

     UW       (2) 

 

Suppose now we consider changes of state for a non-isolated system. When the system 

performs the process 21  , but the work done is now different of the variation of the 

energy U . We define heat the difference 

 

     WUQ       (3) 

 

The internal energy U is associated with the internal degrees of freedom. It consists of 

the kinetic energy of atoms (and molecules) and the potential energy f the interaction between 

them. It is an extensive function of state and can be written as a function of the external 

parameters and the temperature: 

 

     T,a...,,a,aUU n21     (4) 

 

Work and heat flow are different forms of energy transfer. They are not state functions, 

they depend on the process. 
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Work is the energy transfer by the modification of the the macroscopic degrees of 

freedom, i.e. the external parameters  )Vp(  . 

Heat flow is the energy transfer between microcopic degrees of freedom, i.e. without the 

modification of the external parameters. 

The first law introduces the internal energy U as a function of state. For infinitesimal 

changes 

 

     WQdU       (5) 

 

Reversible processes: processes for which direction could be changed by an infinitesimal 

change in the applied conditions. They are cuasistatic and has no hysteresis. For reversible 

processes work is well definedby the properties of the system.  

Example. the isothermal compression of an ideal gas: pdVW  , which for 

compression is positive. In a finite change  
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For irreversible processes, usually pdVW irrev . 

For cycles: 

 

    0dU     0Q     0W   (6) 

 

For simple systems (only one external parameter, usually the volume) 

 

    pdVdUQ       (7) 

and in general 
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Heat capacities 

By definition 
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Since Q  depends on the process, so does C. For an ideal gas: 
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The second law 

 

The first law states energy balance, the second law deals with the direction of processes. 

Remember the general principle: left to itself, an isolated system initially not in equilibrium 

always advances towards an equilibrium state, although a change in the opposite direction 

would equally conserve energy.  

Real processes are all irreversible. Examples: heat, by itself, will never pass from a colder 

to a hotter body (2nd law due to Clausius); a process whose only effect would be the complete 

conversion of heat into work cannot occur (Kelvin).  

These are negative sentences and is difficult to build a theory starting with them. The 

quantity which points to the direction in which processes occur is the entropy introduced by 

Clausius in 1854. In 1870 Boltzmann discovered a relation between the macroscopic entropy 

and the microscopic properties of a system. This is the famous Boltzmann relation which will 

be demonstrated later. It allows a convenient passage from the microscopic (molecular) pov to 

the macroscopic (phenomenological, TD) pov.  

The TD approach 

In the relation of the 1st law (5) the only perfect (total) differential is dU. Elementary 

work W  and heat Q  are not perfect total differentials, i.e. they are not the differential of 

some function of the TD variables (external parameters and temperature). But it can be 

shown that using an integrant factor, namely 1/T, we find a perfect diferential as below: 
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     dS
T
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This is not a mathematical result, but a physical result from experiments expressed in a 

mathematical form. The new form of the 2nd law is: elementary heat admits an integrating 

factor. This factor could be choosen to be the inverse of the absolute temperature. 

The new function of state S is the (absolute) entropy. It is a function of state, as the 

internal energy, the pressure or the volume, depending on the external parameters ai and the 

temperature T,  T,a,...,a,aSS n21 . It is an extensive function of state. Therefore the 1st 

law for simple systems and for reversible changes (5) is written 

 

    pdVTdSdU      

 (12) 

 

This gives the differential of U as a function of S and V,  V,SUU  . U appears as a 

characteristic function (see later). 

We can write the formal expansion dV
V
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The Schwartz lema gives a first "Maxwell relation" 
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Relation (12) is the 1st law only for reversible processes. Then  

 

  pdVWrev    TdSQrev     (15) 

 

For irreversible changes we have the inequalities: 
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   pdVW irrev  (see above Eq. (6))  (16) 

and then  

   TdSQirrev   
T

Q
dS irrev

    (17) 

 

In Eqs. (16, 17) equality appears only for reversible processes. 

 

The relation between the caloric and the thermal equations of state 

Let's work with simple systems for which  T,VUU   and  T,Vpp  . Begin with 

1st law for reversible changes (12): pdVTdSdU  . We find successively 
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Example 1. Ideal gas. 
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This is Joule's law for ideal gases: internal energy of a perfect gas does not depend on the 

volume for isothermal processes. Therefore 
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For usual temperatures CV does not depend on T and integrating 

      const TCV,TU Vid     (19) 
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The internal energy will be const
V
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Example 3. Entropy of ideal gases and of Van der Waals gases. 
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T
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Ideal gases: 
V
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CdS V  ,  0lnln SVRTCS V    (20) 

Van der Waals gases:     0)ln(ln SbVRTCS V   (20') 

 

Thermodynamic potentials (characteristic functions) 

 

A characteristic function is a function of state allows to find at once all other TD 

properties. They are also used to obtain equilibrium conditions. We consider only simple 

systems, with the particular case of the ideal gas.  

Internal energy U(S, V). Eqs (12-14) define this function. For irreversible processes Eq. 

(12) is pdVTdSdUirrev  , hence for a system at constant S  and V (adiabat-isochor 

conditions) the internal energy U has a minimum at equilibrium (because 0U ) 

 

Free energy    F(T, V)= TSU      (21) 

 

   pdVSdTdF      (22) 
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Minimum of free energy at equilibrium, for isotherm-isobar processes 

 

Enthalpy      pVUpSH ,     (25) 

 

   VdpTdSdH      (26) 
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Minimum of enthalpy at equilibrium for adiabatic-isobar processes 

 

Free enthalpy      TSpVUTpG ,    (29) 

 

   VdpSdTdG      (30) 
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Free enthalpy minimum at equilibrium for isotherm-isobar processes 

 

 

The third law 

 

TD can not find constants as S0 from Eq. (20). The 3rd law gives a value for the entropy 

of a system as the absolute temperature drops to zero. The explanation is given by statistical 

arguments. The content of the third TD principle is  

 

   KTS 0for0lim       (33) 

 

Consequences: 

 - the heat capacity of a system vanishes at T=0 K 
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 - the thermal expansion coefficient at constant pressure vanishes at T=0 K. The thermal 

expansion coefficient at constant pressure is defined by  
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B. STATISTICAL PHYSICS 

 

Introduction. Micro and macrostates. Statistical weight. Priciples 

 

Macrostate (TD state): state of a system described by TD functions of state: U, T, p, V, 

F, H, G, etc. For a simple system the description by two parameters is satisfactory. For more 

complex systems the no. of TD parameters is small. 

Microstate (molecular state): state of a system described by coordinates and momenta 

of all the particles inside. The no. of parameters is huge, 6·1023 for a mole.  

Ensemble (virtual ensemble): the family of microstates compatible with a macrostate. 

Statistical weight: denoted by Ω, is the number of microstates from an ensemble. It is 

huge (
1001010 ) for equilibrium states and very large (10100) for states close to equilibrium.  

 

 

 

Principles of SF.  

1. The statistical weight has a maximum for equilibrium states. 

2. Without any additional knowledge, we assume that each microstate from an 

ensemble has a priori the same probability. 

3. TD quantities are obtained as average over ensembles of the corresponding 

microscopic quantities. Time average equals ensemble average. 

 

 

The Boltzmann relation 

 

It is the relation between the entropy S - a TD macroscopic quantity - and the statistical 

weight Ω. Imagine a system divided in two subsystems. The entropy is additive, as is the 

heat. The entropy is a measure of the disorder of the systems. Boltzmann assumes that the 

entropy depends on  the statistical weight, S=S(Ω). For the two sub-sy stems and the whole 

system we write: 

    212211 )()(  SSS  

We derive with respect to Ω1 and Ω2 and find: 
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      lnkS      (35) 

 

The Boltzmann distribution 

 

Distributions 

 

In statistical physics a distribution is a certain arrangement of particles on available states (the 

mathematical meaning in probabilities is a little different). Simple examples from everyday 

life: 

Particles are N=2 different coins; states are two pockets.  

The possible arrangements are: 

 

 

 

This is the distribution of coins in the 2 pockets.  

The probability that the two coins would be in the same pocket is 2/4=0.5, because there are 

two “good” states (the far left and the far right) from 4 possible. 

 

Particles are N=2 indistinguishable microparticles which may be in two different states: Such 

particles are e.g. photons, or certain pairs of electrons. 
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The probability that the two coins would be in the same pocket is 2/3=0.67, so it’s bigger 

than before. This type of indistinguishable microparticles is called bosons. They like to be 

together. Indeed, the probability that the two coins would be in the same pocket is 2/3=0.67, 

because there are two “good” states (the far left and the far right) from 3 possible. 

 

Particles are N=2 indistinguishable microparticles which may be in two different states, but 

this time we may have at most one particle in a state: 

 

 

There is just one possible state. This type of indistinguishable microparticles is called 

fermions. They don’t like to be together. Such particles are e.g. electrons. 

 

In the above examples we didn’t care about physics, but in physics we are interested in 

distributions with certain limiting conditions (constraints): constant temperature, constant 

energy, etc. Assume we want to find all the possible states of N=2 particles which may have 

three different states with energies E, 2E or 3E; state with energy E has two sub-states (one 

says its degeneracy g=2 and state with energy 2E has the same double degeneracy. The 

sketch of the possible states is given below (without particles) 

 

 

We want the possible states with the total energy U=4E. They are shown below for bosons: 
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We may say the system has one macrosate with energy U=4E and 5 compatible microstates, 

so the statistical weight is Ω=5. These 5 microstates may be classified in two families (they 

are known as complexities, but we shall not use this name): the first two and the other three. 

What is the criterion?  

The probability that the two particles would have the same energy is 3/5=0.6. 

 

Exercices. 1.Draw the possible states for the same problem if the particles are fermions. 

2. Draw the possible states for the same problem if the particles are classical. 

   3. Draw the possible states for the same problem if the total energy is U=5E. 

 

Stirling approximation 

 

We’ll need to compute an approximation of ln(n!), when n>>1. What follows is but a rough 

justification of the result. Write: 

 

ln1ln2ln3 ...1)-ln(ln1)22)....3-(1)-(ln()!(ln  nnnnnn  

As n>>1 the difference between two adjacent arguments is much smaller than the arguments 

themselves for many terms. This difference is equal to 1. As it is small, we may (horrible 

mathematical thing) go from sum to integral putting 1d x : 

 

  nnnnnnxxxxx

nnnnn

n 



 ln1ln-)(ln)dln(

1lnln2ln3 ...1)-(l)(l)!(ln

1

n

1

  

This is the Stirling approximation: 

 

   1Log)!(Log  nfornnnn     (36) 
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The following graph shows calculated points Log(n!) and the Stirling approximation for 

1<x<100.  

 

 

 

The general problem is: find the equilibrium distribution of N identical particles on states 

with energies ,...,,, 321 s states having degeneracies sgggg ...,,, 321 . The total energy 
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
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i

inN
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.  

We have to find the number of particles on each state, that is the numbers snnn ...,, 21 . The 

equilibrium distribution is the most disordered one. That means it is the most probable 

distribution, the distribution with the biggest statistical weight.  

 

Assumptions:  

the temperature is constant, as is the energy (strictly speaking the two conditions are 

different, but the difference is very small) 

the particles are independent, in the sense that we may put any number of particles in any 

state, if the two conditions  
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

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are satisfied. 

 

■■■ Not for exam till ■■■ Appendix 

Let’s compute the statistical weight Ω for a certain distribution of particles among the s 

states, i.e. the number of ways we obtain certain values of ni s. It’s clear that we obtain the 

same distribution if we permute the particles. The number of such equivalent distributions is 

N!. But here we add in all the cases where particles in one cell are permuted and that doesn’t 

give new states. So we have to divide by !!...!! 321 snnnn  to get the number of different ways 

to get a certain family of values snnn ...,, 21 : 

!!...!

!

21 snnn

N
 

 

To get the probability of such a distribution we have to multiply this number by the a priori 

probability to have one of these distributions.  

The probability that one particle is in the first state is g1; the probability to have n1 particles in 

this state is 1
1
n

g  

The probability that one particle is in the second state is g2; the probability to have n2 

particles in this state is 2
2
n

g  

….. 

The probability that one particle is in the s’s state is gs; the probability to have ns particles in 

this state is sn
sg  

The probability to have n1 particles in the first state, n2 in the second,…, ns in the s’s is the 

product of the individual probabilities, i.e. sn
s

nn
ggg ....21

21 . The statistical weight is 

eventually: 

 

sn
s

nn

s

ggg
nnn

N
....

!!...!

!
21

21
21

    (3A) 
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We want the maximum of this number. It’s easier to compute the maximum of its logarithm: 

 

     














s

i

i

s

i

ii
sn

s
nn

s

gnnnNNggg
nnn

N

1

i

1

2
2

1
1

21

ln1ln1ln....
!!...!

!
lnln  

To find the maximum we compute the derivative and make it zero: 

 

0d)1ln(dln

1

 


i

s

i
i

i n
n

g
   (4A) 

 

Differentiation of the two conditions (1) and (2) gives two new conditions: 

 

0d

1




s

i

in      (5A) 

 

0d

1

i 


s

i

in      (6A) 

 

Multiply (5A) by λ and (6A) by –β (Lagrange) and add all together to find the conditions: 

0d)1ln(

1




ii

s

i
i

i n
n

g
    (7A) 

 

Here all the variations are independent so each bracket is zero and we get: 

 

    ]exp[ iii Agn       (8A) 

 

which is the Boltzmann distribution. One can demonstrate that 
TkB

1 . Note the 

exponential behavior. 

The constant A is obtained from the normalization condition  
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Nn
s

i

i 
1

 or  1

11




s

i

i

s

i

i P
N

n
   (9A) 

 

where Pi is the probability to have ni particles with energy i . Using (8A) we find: 

 

]exp[

1]exp[
1

1

1
i

s

i

i

i

s

i

i

Ag

N
AhenceAg

N















  (10A) 

 

Remark 1. We have assumed energy has a discrete spectrum, it does not vary continuously. 

This is a quantum picture, used because it is easier to think of numbers instead of continuous 

varying functions. Anyway, each measurement apparatus has a lower value it can measure, 

the so-called resolution. We can’t measure energy values with accuracy superior than the 

resolution. So we may assume we measure the energy in discrete portions. 

 

■■■ 

 

 

Results: 

 Boltzmann distribution  ]exp[ iii Agn     (39) 

where  

      kT1     (40) 

 

Maxwell distribution 

 

Particular situation: we are interested only in the kinetic energy of the molecules. 

 

   






















kT

mv
v

kT

m
Nnv

2
exp

2
4

2
2

2/3


    (41) 

 

This is the Maxwell velocities distribution. The number of molecules with velocities 

between v and v+dv is dnv=nvdv.  

 



 19 

 

 

molM

RT

m

kT
v

22
0  ,   

molM

RT

m

kT
v



88
 ,   

molM

RT

m

kT
v

332     (42) 

 

 

 

Quantum distributions 

 

Particles with integer spins, s=0, 1, 2, 3, … They are called bosons and obey the Bose-

Einstein statistics. The statistical weight for bosons is given by: 

 

    
 
 






!!1

!1

ii

ii
BE

ng

ng
   (43) 

 

At equilibrium the average number of particles with energy i  is given by: 

 

1exp 






 





Tk

g
n

B

EBi

i

EBi


            (44) 

 

 

Particles with half-integer spins, s=1/2, 3/2, 5/2, … They are called fermions and obey 

the Fermi-Dirac statistics. The statistical weight for fermions is given by: 
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 




!!

!

iii

i
FD

ngg

n
   (45) 

 

At equilibrium the average number of particles with energy i  is given by: 

 

1exp 






 




Tk

g
n

B

Fi

i

DFi


             (46) 

 

 


