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1. Foundations of quantum physics 

 

1.1 Unsolved problems in classical physics: 

- photoelectric effect 

- Compton effect (studied subsequent to quantum ideas) 

- spectroscopy of atoms and molecules 

- thermal (equilibrium) radiation 

- heat capacities of solids at low temperatures 

 

1.2 Thermal radiation  

Classical results. Thermodynamical equilibrium is not static. Even if the 

temperature of a body is constant it emits and absorbs energy under the form of em 

waves. This radiation exchanged by bodies at constant temperature is known as the 

thermal radiation.  

Kirchhoff (around 1860) established two laws for the thermal radiation. They 

are based upon experiments as well as on thermodynamical reasoning.  

1st law: thermal radiation is homogeneous, isotropic, non-polarized and does not 

depend on the specific material bodies are made of.  

2nd law: (in a non-rigorous expression): the ratio between energy emitted and 

absorbed by a body at constant temperature T depends only of T and on the frequency.  

Black body. A black body is a body that absorbs all the incident radiation falling 

upon it. For such a body the energy emitted should have the attribute given by 

Kirchhoff’s 2nd law. This energy emitted is proportional to the spectral density of 

energy of the radiation. The spectral density of energy )(Tu is the existing energy 

for each unit of volume per unit of frequency: 
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For each frequency the em field can oscillate on several modes. The number of such 

modes per unit of volume and per unit of frequency is the mode density   
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This is a purely mathematical result, perfectly established. If we multiply this number 

by the average energy of such a mode we get precisely the spectral density of energy. 

Very elaborated classical calculations (the so-called equipartition theorem) find for 

the average energy of a mode the relation: 
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where g is the number of independent polarizations; for em waves g=2. Hence: 
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This is indeed a function which depends only on   and T but it does not fit 

experimental data, except at low frequencies, see Fig. 1: 

 

 
Fig. 1. Classical and quantum spectral density of energy for thermal radiation emitted  

by black bodies 

 

 Planck’s quantum hypothesis. In the classical relation (Q1.4) the first factor is 

indisputable being a mathematical result. The second is a result of the finest methods 

of classical statistical physics. Planck suspected this last factor and obtained a result in 
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accordance with experiment using the quantum hypothesis: bodies emit and absorb 

energy in quanta. These discrete or quantified energies are given by  
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The constant  

seV100.66sJ1005.12 -1534  h   (Q1.6) 

is the reduced Planck constant. 

The calculus goes as follows: 

Use Boltzmann distribution with gi=1 (the degeneracy is given by (Q1.2). The 

probability to have the energy n  
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Hence the average energy is 
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The derivative becomes: 
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Put it in (Q1.4) instead of kBT we find the Planck relation: 
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This expression fits well experimental data and allows to find experimental laws (see 

exercice below). 

Exercice: Show that:  

a) The maxima of the curves appear at frequencies i0 such as  
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b) The area under the curves is proportional to T4 (Stefan-Bolzmann law). 

 

 

1.3 Photoelectric effect 

Electrons leave a material (usually a metal) illuminated with light. The 

experiment must be done in vacuum. In the tube from Fig. 2 an electric current 

appears immediately after the metal is illuminated. 

 

 
   Fig. 2. Photoelectric effect 

 

Experimental laws: 

1. The effect appears instantaneously 

2. The electric current is proportional to the light intensity 

3. The stopping potential Us depends linearly on the frequency of the light 
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4. There is a threshold frequency for which Us=0; for smaller frequencies the 

effect disappears.  

All but the second law are impossible to explain in classical physics where light 

is an electromagnetic wave. 

Einstein’s explanation: light does not behave as an elmgn wave, but as a flux of 

particles which today are called photons. These photons with frequency   has an 

energy given by the Planck quantum hypothesis, namely phE . This energy splits 

in two. A part is used to extract the electron from the material, the extraction work 

Wextr. The other part is given to the electron as kinetic energy. The energy 

conservation is: 

   stextr eUmvW  0

2

2
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Exercise: explain the laws using the Einstein relation.  

Light used is usually in the UV or visible regions of the spectrum. 

 

1.4 Compton effect 

If we use em waves with bigger energy such as X-rays or gamma rays another 

effect emerges – the Compton effect. Wavelength of incoming rays is shifted towards 

the lengthier part of the spectrum. The incoming wavelength   has values of the 

order of 0.1 nm, hence the frequency is roughly 1019 Hz. The energy given by 

Planck’s relation is keV5J10 15  
phE . Electrons may be considered free, because 

in materials they are linked with energies of roughly 1-10 eV. We must use relativistic 

equations to write down conservation of energy and momentum (see the lectures for 

figure and equations). The final relation is: 
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where   is the wavelength of the emergent X-ray, pm4.2
0


cm

h
C  is the 

Compton wavelength and   is the deviation angle of the photon.  

Exercises: 1). Compare photoelectric and Compton effects. Why equations are 

different ? Why do we not use momentum conservation for the photoelectric effect ? 

2). Light is a wave or is made of particles (this is a VERY difficult question). 
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1.5 Wave-particle dualism. De Broglie hypothesis 

Light has sometimes wavy character and sometimes seems to be made of 

particles. Louis de Broglie put forth the hypothesis that each microscopic entity has 

both wave and particle characteristics. The wave-particle duality has a universal 

applicability to all microscopic entities. 

Consider a microparticle moving in vacuum with constant velocity v . Its 

particle features are given by its energy and its momentum; from SR: 
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On the other hand, in the wave approach the entity is described by its frequency 

  and its wavelength  , or its wave-vector kuk 


2

 . We already know that 

for light (in general for em waves) we have phE . De Broglie assumed that 

the same is true for each microparticle: E . Moreover, a similar relation 

exists between momentum and wave-vector: kp




 . One may write: 

 

 E  kp
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  or P=K for 4-vectors (Q1.14) 

 

The wavelength associated with the particle is the de Broglie wavelength: 

 

     
p
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A hpw (or a plane monochromatic wave) can be written in two ways: 
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Experimental evidence: de Broglie made his assumption in 1924. Three years 

later Davisson and Germer detected electron diffraction by metal surfaces. 
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http://hyperphysics.phy-astr.gsu.edu/hbase/davger.html#c1 

 

Davisson-Germer Experiment 

 
 
 

This experiment demonstrated the wave nature of the electron, confirming 
the earlier hypothesis of deBroglie. Putting wave-particle duality on a firm 
experimental footing, it represented a major step forward in the development 
of quantum mechanics. The Bragg law for diffraction had been applied to x-
ray diffraction, but this was the first application to particle waves. 

 

From http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html#c1  

Bragg's Law 

When x-rays are scattered from a crystal lattice, peaks of scattered intensity 
are observed which correspond to the following conditions: 
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1. The angle of incidence = angle of scattering. 
2. The pathlength difference is equal to an integer number of 

wavelengths. 

 

 

The condition for maximum intensity contained in Bragg's law above allow 
us to calculate details about the crystal structure, or if the crystal structure is 
known, to determine the wavelength of the x-rays incident upon the crystal. 

 
 

From http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/davger2.html  

The Davisson-Germer experimentdemonstrated the wave nature of the electron, 
confirming the earlier hypothesis of deBroglie. Putting wave-particle duality on a firm 
experimental footing, it represented a major step forward in the development of 
quantum mechanics. The Bragg law for diffraction had been applied to x-ray 
diffraction, but this was the first application to particle waves. 
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The electron beam was directed at the nickel target, which could be rotated 
to observe angular dependence of the scattered electrons. Their electron 
detector (called a Faraday box) was mounted on an arc so that it could be 
rotated to observe electrons at different angles. It was a great surprise to 
them to find that at certain angles there was a peak in the intensity of the 
scattered electron beam. This peak indicated wave behavior for the 
electrons, and could be interpreted by the Bragg law to give values for the 
lattice spacing in the nickel crystal. 

The experimental data above, reproduced above Davisson's article, shows 
repeated peaks of scattered electron intensity with increasing accelerating 
voltage. This data was collected at a fixed scattering angle. Using the Bragg 
law, the deBroglie wavelength expression, and the kinetic energy of the 
accelerated electrons gives the relationship 

 
Quantum world embraces all phenomena for which the quantity action has the 

order of a few  ’s. the table shows some processes and their associated action. 
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From Chr. Schiller, Motion Mountain, the adventure of physics, 2006  
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1.6 Spectral series. The naïve Bohr’s theory 

Atomic spectra from gases show remarkable regularities. Spectral lines arrange 

themselves in series. A spectral series is a family of lines emitted by an atom whose 

frequencies may be deduced from a simple law, by the change of just one parameter. 

The first spectral series was observed by Balmer in 1855, in the visible spectrum of 

atomic hydrogen. The inverse of the wavelength – (the wavenumber ~  – is given by: 
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Here -17 m10097.1 HR  is the Rydberg constant. Other series of atomic hydrogen 

are obtained from  
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Similar relations, although more complex, exist for all elements. The combination 

principle (Rydberg-Ritz, 1908) follows: the wavenumber mn~  of a spectral line is 

always given by the difference of two terms, known as spectral terms: 

 

     )()(~ nTmTmn     (Q1.18’) 

 

Classical explanations fail to explain such a simple relation.  

In 1913 Niels Bohr put forward a new theory based on two postulates and a quantified 

condition. 

1st postulate. Each atom (in general each microsystem) is characterized by a family of 

stationary states with discrete energies E1, E2, E3,… En. When in these states the 

system does not emit or absorb energy. 

2nd postulate. The energy of a microsystem may vary only by discrete values by 

transitions from a stationary state of energy Em to a stationary state of energy En. The 

transition is associated to an emission or an absorption of a photon with frequency 

given by 

    nmmn EE      (Q1.19) 

If 0mn  the photon is emitted if 0mn  the photon is absorbed.  
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The Bohr condition (Q1.19) represents the energy conservation for each process of 

exchange of energy with emission or absorption of photons. It explains the 

combination principle (Q1.18’). 

The quantum condition specifies that the angular momentum of an electron in an atom 

is quantified: 

   nvrmln  0   n=1, 2, 3,…  (Q1.20) 

 

This condition could be understood using a model where the electron moves on a 

circular orbit around the nucleus as in Fig. 3.  

 

 
  Fig. 3. The orbit of an electron and the de Broglie associated wave. 

 

The electron has an associated wave and as its movement ought to be stable the orbit 

must contain an integer number of wavelengths: 
p
hnnr  2 . Hence nlpr  . 

Assume a hydrogen atom with the nucleus made of one proton. This proton is 

more than 1800 times heavier than the electron and we shall consider it at rest. Write 

the equality of Coulomb and centrifugal forces: 2
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one finds: 
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m1029.5 11
1

r  is the first Bohr radius. Velocities and radii are quantified. 

The energy of the electron on the n-th orbit is quantified too and given by: 
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Exercise: Compute the Rydberg constant as: 
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The existence of stationary states was demonstrated by the Franck-Hertz 

experiment (http://en.wikipedia.org/wiki/Franck%E2%80%93Hertz_experiment ).  

 

1.7. Measurements on microscopic systems. The uncertainty principle 

Heisenberg has shown that measurements disturb in an uncontrollable way the 

microscopic systems.  

Example 1. Assume we want to measure the position of an electron in a 

Hydrogen atom. Dimensions of the atom are of the order of m105 11
1

r . The 

momentum of the electron is roughly 


2
0

010
emvmpe  . We need a  -ray 

microscope with a wavelength smaller than r1, let’s say m10
5

111 
r

meas . Such a 

photon has a momentum given by (Q1.15): epem
r
hp 30105 2
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
 . Measuring 

the position of the electron means to change without control its momentum.  

Example 2. Assume a particle with momentum p moves in the Oy direction and 

goes through a slit of width x . Due to diffraction, behind the screen the particle 

moves no more in the Oy direction and acquires a momentum along Ox, namely xp . 

This momentum is given by sinppx  , where   is the diffraction angle. From 

the theory of the diffraction through a slit phx  sin . Therefore  

 

hpx x      (Q 1.24) 

 

Therefore h is a limit for the product of uncertainties in measuring the position 

and the corresponding momentum. Relations of type (Q1.24) are known as 
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uncertainty relations. One can show that the following relations, named the 

Heisenberg uncertainty relations, are true in the area of quantum mechanics: 
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Here E  is the error in measuring energy E and t  the time interval during which 

one measures this energy. These relations are true even if we don’t interact with the 

system: a quantum system has no simultaneous precise values for conjugated 

physical quantities. Examples of conjugated quantities: each position and the 

corresponding momentum, energy and time.  

 


