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II.7. THE ANALYSIS OF THE SCHRÖDINGER 

EQUATION 

BY ELECTRICAL MODELLING 
 

1. Work Purpose 

The objective of this paper is to study the behavior of a particle of 

mass m, situated in the potential well ( )xVV = , whose dynamics is 

described by the Schrödinger equation.  For this we will obtain the energy 

values of the energy, as well as the corresponding wave functions. 

2. Theory  

We will use the analogy between the differential equation for the 

wave function ( )xΨ  and the differential equation for the voltage ( )xUU = , 

in an electric circuit conveniently chosen. 

The proposed electric model is presented in Figure 1. 

Figure 1. 

In this model, sL  and pL  are ideal inductances, pC  is an ideal 

capacitor, and R  is a resistance allowing the measurement of the current gi  

through the generator G (of constant voltage and variable frequency), the 

computing relation being RUiG /0= , where the voltage 0U is read by the 

millivoltmeter mV. 
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Let ω be the frequency when the current Gi  is minimum 

(theoretically null if sL , pL  and pC  are ideal circuit elements). In this 

case, the point A where G is connected at the circuits could be anywhere 

and the first Kirchhoff law written for any knot  (let B be this one) is 

04321 =−−− IIII .       (1) 

The second Kirchhoff law written for the branch traversed by the 

current 1I  gives: 

( ) ( ) ( ) ( ) 00 11 =
ω
∆

∆
∆−−

+⇒=∆−−+ω
s

s L
x

x
xxUxUIxxUxUIL .   (2) 

Using the Lagrange theorem for ( )xU , this becomes 
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In the same way the second Kirchhoff law written for the branch traversed 

by the current 2I  gives: 
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or, using the Lagrange theorem,  
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The currents 3I  and 4I  results directly:  
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In the end the relation (1) becomes:  
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Using again the Lagrange theorem, this time for 
dx
dU , we have: 

x
xd
Ud

xd
Ud

xd
Ud

x
xxxx

∆⋅≅−
∆

−
∆

+
2

2

22

.       (8) 

By replacing (8) in (7), it results that the differential equation that is 

satisfied by the voltage ( )xUU =  (the voltage being measured between the 

knot and the ground) is: 
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The relation (9) is similar with the Schödinger equation: 
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In order to have the same numerical values (that is ( ) ( )xxU Ψ= ), it 

is necessary that the boundary conditions are the same and the following 

equality must be satisfied: 
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We choose to model ( )xVV =  by applying ( )xLL pp = ; we obtain: 
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where ( ) .21
0

−= psCLω  Then, by measuring the frequency ω  for 0=Gi , 

we can compute the energy values by means of the relation (12.b). 
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In the following we will analyze two potential well configurations, 

the infinite (Fig 2.a) and the finite (Fig 2.b) ones. 

Figure 2. 

We specify that, experimentally, the condition ∞=V  implies 

0=pL  (that is equivalent with a ground connection); the condition 0=V  

implies ∞=pL  (that is equivalent with the absence of pL - open circuit). 

The case 0VV =  has been particularized by taking sp LL = . 

3. The experimental set-up 

Figure 3. 

By maintaining the basic idea presented in Figure1, we realised an 

experimental set-up with the front panel presented in the Figure 3: 

1. 1K  is a switch that lets us use the instrument A as a minimum values 

indicator (the position “ ( )xΨ “). Attention! The instrument has the zero 

in the middle of the scale. 

2. F is a potentiometer that allows the calibration and the reading of the 

frequency supplied by the generator. 
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3. M.P. represents the measuring points, marked in the superior part of the 

panel with figures from 1 to 20. In the case of our set-up, the interval 

( )a,x 0∈  has been simulated with 10 cells ( )pps CLL ,, , so that we 

have 10==
∆

N
x

a . The correspondence between the figures attached to 

the measuring points and the x values is given in Table 1. 

4. B is a jack that allows the reading of the voltage ( )xUU =  respectively 

that of the wave function ( )xΨ=Ψ  by applying it on the desired M.P. 

(with 1K  in the position “ ( )xΨ ”). 

5. 2K  is a switch that allows us to obtain the configuration from Figure 

2.a (when in the position “∞“) and 2.b (when in the position “ 0V ”), 

respectively. 

Table 1 

M. P. 1 2 3 4 5 6 7 8 9 10 
x/a – 0.4 – 0.3 – 0.2 – 0.1 0.0 0.1 0.2 0.3 0.4 0.5 

M. P. 11 12 13 14 15 16 17 18 19 20 
x/a 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

 

4. Working procedure 

a) Infinite potential well 

We switch 2K  in the position “∞ ” and 1K  in the position “E”. 

Starting with F from the minimum frequency, we slowly increase the 

frequency until A indicates the first minimum corresponding to the 

fundamental energy state; we write down the corresponding frequency, ω1. 

By switching 1K  in the position “ ( )xΨ ”, we touch with B the measuring 

points corresponding to the interval ( )a,0 ; then we fill the first line in 

Table 2 with the values of ( )axUU 11 = . After that, we switch back 1K  in 
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the position “E” and we increase the frequency until the next minimum, 

repeating the above measurements. 

Table 2. 

Case n ax  – 0.4 ... 
1 1U  (V) ... ... 

a) 
2 2U  (V) ... ... 
1 1U  (V) ... ... 

b) 
2 2U  (V) ... ... 

 

b) Finite potential well  

We switch 2K  in the position “ 0V ” and we repeat the operations 

indicated at the point a); we write down the values of the frequency and the 

voltage ( )axUU 22 =  for the first two minima. 

5. Experimental data processing 

a) Infinite potential well 

In this case the equation (10) has the solution: 
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and the energy values are given by the relation: 
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For each frequency we represent the graphs of the dependence: 
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respectively. In Eq. (16), maxnU  (n = 1, 2) is the maximum measured value 

and is extracted from Table 2. The mentioned dependencies will be 
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represented in the same graphic in order to check the correctness of the 

hypotheses used for the modelling. 

Taking into consideration the case of one electron, we calculate the 

energy values in the two states through the theoretical relation (14) and also 

through the experimental relation (12b). Then we compare the results. The 

values of the constants are: 910−=a m; 1010−=∆x m; 31101.9 −⋅=m kg; 
341005.1 −⋅=h J·s; 500200 =πω=ν  Hz. 

b) Finite Potential well  

The equation (10) has the solution: 
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mEk =  The energy values are the solution of 

the equation:  
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For the analysed system, Equation (18) admits the following solutions: 

068.001 =VE , 269.002 =VE  and 962.003 =VE . From the relations 

(12.a) and (12b) we obtain the general expression: 
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We represent graphically the dependency of ( ) 2
maxnn UxU  on ax  for 

the two frequencies ω1, ω2. We remark the exponential decrease of the 

wave function modelled through the dependence ( )axU n  for 0<x  and 

ax > . 


