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II.3. DETERMINATION OF THE ELECTRON SPECIFIC 

CHARGE BY MEANS OF THE MAGNETRON METHOD 

 

1. Work purpose 

The work purpose is to determine the ratio between the absolute 

value of the electron charge and its mass, e/m, using a device called 

magnetron. In this device, the trajectories of the electrons emitted by a 

heated filament are modified by an externally applied magnetic field. 

2. Theory 

The method to determine the electron specific charge e/m is based on 

the study of the electron movement in electric and magnetic fields. The 

force acting upon a particle of charge q = – e under these fields is called 

Lorentz force and is given by the formula: 
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where vr  is the electron  velocity, E
r

 is the electric field intensity, and B
r

 is 

the magnetic field induction. 

According to Newton’s second  law: 
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the equation of the electron movement is of the form: 
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To determine the electron specific charge, we will use the magnetron 

method. The magnetron is a cylindrically symmetric vacuum diode, placed 

inside a concentric solenoidal coil. Its section is presented in Figure 1. The 

cathode C, formed by a wire that also serves as filament, is coaxial with the 

cylindrical anode A and with the coil S, so that the magnetic field induction 

vector B
r

 is paralel with the magnetron symmetry axis. 
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Figure 1. 

When 0=B , the electrons emitted by the cathode through 

thermoelectronic emission, will move radially towards the anode under the 

influence of the electric field E
r

 produced by the bias U applied to the tube. 

When 0≠B , the electrons suffer a deviation orthogonal to vr , due to 

the magnetic field. Their trajectories, starting from the cathode and ending 

on the anode, curve themselfs. If the magnetic field becomes great enough, 

then it is possible that the electrons can never reach the anode. This 

happens when their trajectories become circular, with the radius r = R/2. In 

this situation the electrons form a space charge region around the cathode, 

screening it, and the anodic current practically drops to zero. We will try to 

find out a relation that will give us the expression of the electron specific 

charge e/m, starting from this experimental situation. 

 Due to the magnetron symmetry, we will use cylindrical coordinates 

r, θ, z, so that ruEE rr
−=  and zuBB rr

= .The unitary vectors θu,ur
rr , are not 

constant (see Figure 2), but are given by the relations 

yxyxr uuuuuu rrrrrr
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so that their time derivatives are 
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 The velocity is then 
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and the vectorial Equation (3) takes the form 
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Figure 2. 

To find out the electron trajectory, we will suppose that the time 

dependence of any quantity is implicit through the time dependence of the 

radius, that is 
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 Then Equation (8) becomes 
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which has the solution 
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To find out the integration constant A, we will suppose that the 

electrons are emitted orthogonal to the cathode surface (this assumption is 

supported by the action of the image force that appears when a charge is 

close to a metallic surface), so that 
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RC being the cathode radius. From this condition we obtain 
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and also, from Equation (9), 
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where V is the potential, the relation (7) will give 
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Under the conditions (13) and 
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the solution of Equation (17) is 
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At the anode radius RA, 
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This means that the only electrons that can reach the anode are those for 

which the right hand side of Eq. (20) is non-negative. If 00 =v , this means 
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(as RC  << RA). Otherwise, we need 
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From equation (21) we also obtain the electron specific charge as 
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The conduction electrons in metals are described by the Fermi-Dirac 

statistics. However, as the extraction work is much greater than the thermal 

energy kBT, the emitted electrons obey a Maxwell-Boltzmann statistics, 
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Although this relation is not consistent with the assumption (13), it gives us 

a good description of the emitted electrons behaviour. As long as B<B0, all 

the emitted electrons reach the anode, so that 
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When B ≥ B0, 
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so that we obtain 
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As the magnetic field induction for a coil is 
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we can write 
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The logarithm of equation (30) is 
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When 
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which represents an almost straight line. The corresponding graph is 

presented in Figure 3. One can see that, using this function the 

determination of 2
0I  is rather easy. 

The value of the constant K is well determined in each experimental 

case (when n and RA are known) and must be expressed in I.S., so that, by 

replacing the voltage U (in volts) and the current I0 (in amperes), we obtain 

the specific charge e/m (in C/kg). For the device used in the present work, 

the value of the constant  is 91025,2 ⋅=K  ( I. S.). 
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Figure 3. 

3. Experimental set-up 

Figure 4. 

The draft of the experimental set-up, presented in Figure 4, is 

composed of two circuits : in the left part is the circuit of the tube  and in 

the rigth part the one of the solenoid.This includes: 

- The magnetron tube, T. 

- The solenoid, S. 

- The voltmeter V, to measure the voltage applied to the tube. 

- The milliammeter mA, to measure the anodic current; we will use 

the scale of 0.006 A. 

- The ammeter A, to measure the solenoid current; we will use the 

scale of 0.600 A. 

- The rheostats R1 and R2 , used as potentiometers. 

- The switches K1 and K2. 

4. Working Procedure 

 The above set-up is entirely assembled on a  work bed and is feeded 

from the network through a d.c. rectifier. By turning on  the switches K1 
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and K2, both circuits will have a voltage such that with the potentiometer 

R1 we can vary the voltage U applied to the tube and with the 

potentiometer R2 we can vary the current I that flows through the solenoid 

 The measurement of the anodic current i in order to obtain the 

value I0 is made by keeping the bias U constant. The variation steps for the 

current I are chosen such that the readings on the milliammeter scale could 

be made with the highest possible accuracy (i.e. 25 mA).The measurements 

must be performed for three different values of the bias, 321 UUU << , 

conveniently chosen. The results  will be written down in Table 1. 

Table 1 

I(A) ... U1 =
30V i(A) ... 

I(A) ... U2 =
40V i(A) ... 

I(A) ... U3 =
50V i(A) ... 

 

5. Experimental data processing 

 For the three different values of the voltage, U1, U2, U3, one plots the 

graphs ( ) ( )2
0log Ifii =  (see Figure 3). 

Three distinct values will be obtained in this way for 

I0,corresponding  to the three values of the bias U, for which e/m is to be 

computed according to the relation (32). The average of the three obtained 

values e/m is considered to be  the closest  result to the real value.  

6. Questions 

1. How do the electrons move, compared to the direction of the external 

applied electric field E
r

? 

2. How do the electrons move raported to the direction of the magnetic 

induction B
r

? 

3. What is the physical meaning of the relation (19)? 


