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III.7. THE STUDY OF THE HALL EFFECT IN 

SEMICONDUCTORS 
  

1. Work purpose 

The Hall effect is one of the most important effects in the 

determination of the parameters that characterize from the electrical point 

of view the semiconductor materials. The goals of the work are:  

- The determination of the concentration of the charge carriers  (n or p) 

in a sample of extrinsic semiconductors*; 

- The determination of the Hall mobility of the charge carriers in the 

respective semiconductor.  

2. Theory 

The Hall effect is a galvanomagnetic** effect, which was observed 

for the first time by E. H. Hall in 1880. This effect consists in the 

appearance of an electric field called Hall field HE
r

, due to the deviation of 

the charge carrier trajectories by an external magnetic field. We will study 

the Hall effect in a parallelepipedic semiconductor sample of sizes a, b, c  

(see Figure 1). The Hall field appears when the sample is placed under an 

external electric field E
r

 and an external magnetic field B
r

. The Hall field 

HE
r

 is orthogonal on both E
r

 and B
r

. The vectors E
r

, HE
r

 and B
r

 determine 

a right orhogonal trihedron (Figure 1): 

( ) ( ) ( ).,0,0,0,,0,0,0, BBEEEE HH ===
rrr

       (1) 

                                                            
* Extrinsic semiconductors are semiconductors with impurities in which the 
electric conduction is done either by electrons (semiconductors with donor 
impurities called n-type semiconductors), or by holes (semiconductors with 
acceptor impurities called p-type semiconductors). 
** Galvanomagnetic effects are physical phenomena that appear in substances 
during the interaction between the externally applied magnetic field and the 
charges moving through those substances. 
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Figure 1. 

 Under the action of the external electric field ( )0,0,EE =
r

, through 

the semiconductor sample flows a current I.  Applying on the sample the 

magnetic field ( )BB ,0,0=
r

, a potential difference HU , called Hall bias, 

appears between its lateral faces, on the direction normal to both E
r

 and B
r

: 

BAH VVU −= .     (2) 

The Hall bias is determined by the deviation of the charge carriers, which 

form a current through the sample, under the action of the Lorenz force: 

( )BveFL
rrr

∧±= ,     (3) 

where vr  is the average (drift) velocity of the charge carriers moving 

through the sample under the action of the field E
r

 and e is the elementary  

charge ( 19106.1 −⋅≅e C). The absolute value of the Hall field intensity is: 

a
UE H

H = .            (4) 

The external and the Hall electric fields produce the electric force elF
r

: 

( )Htel EEeEeF
rrrr

+== ,         (5) 

where tE
r

 is the total electric field. The total force that acts on the charge 

carriers is: 

Lelt FFF
rrr

+= .     (6) 
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The (negative) electrons and (positive) holes moving through the 

sample satisfy the equations: 

( )BvE
m
ev

dt
vd

et
ee

ee rrrrr
∧+−=

τ
+ * ,       (7) 

( )BvE
m
ev

dt
vd

ht
hh

hh rrrrr
∧+=

τ
+ * ,      (8) 

 where  *
em , *

hm  and eτ , hτ  are the electrons and holes effective masses 

and relaxation times, respectively. In steady states, the time derivatives 

cancel and we will define the electron and hole mobilities as: 

,, **
h

h
p

e

e
n

m
e

m
e τ

=µ
τ

=µ          (9) 

so that Eqs. (7), (8) become: 

( )
( )









=
−µ−=

+µ−=

0
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v
BvEv
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        (7’) 

and: 

( )
( )
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 The current density is defined as: 

( )eh vnvpej rrr
−= ,     (10) 

where n and p are the electron and hole concentrations. Solving the 

equations (6 – 10) under the condition 0=yj  ( )0,0,( jj =
r

), we obtain: 

( )EBj σ= ,          (11) 

( ) ,jBBRE HH =      (12) 

where the conductivity σ and the Hall constant HR  are given by the 

relations: 
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( )
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222221
Bnppn
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e

BR
pnpn

pnnp
H

µµ−+µ+µ

µµ−+µ−µ
⋅= .    (14) 

One can observe that the conductivity monotonously decreases from: 

( ) ( )pn pne µ+µ=σ≡σ 00           (15) 

to 

( )
( )

( )

1

2
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−

∞
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pn

np

np

np
,        (16) 

while the Hall constant monotonously increases from: 

( ) ( )2
22

0
10

pn

np
HH

pn

np
e

RR
µ+µ

µ−µ
=≡      (17) 

to: 

( )
( )npe

RR HH −
=≡∞ ∞

1 .          (18) 

For intrinsic semiconductors (n = p ≡ ni ), we have 0=σ∞  and: 

( )
np

np

i
H en

BR
µ+µ

µ−µ
⋅=

1 .        (19) 

For heavily doped (extrinsic) semiconductors we have: 

( ) ( ) ,,1, pn
en

BRenB Hn >>−≅µ≅σ         (20) 

( ) ( ) .,1, np
ep

BRepB Hp >>≅µ≅σ         (21) 

From these relations, one can observe that the Hall mobility of the 

carriers can be defined as: 
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( ) ( ) ( )BRBB HH σ=µ .    (22) 

For our sample geometry, we obtain from Eqs. (4) and (12): 

,
iB

bU
ajB
UR HH

H ==           (23) 

where   i   is the current flowing in Ox direction and: 

 
yx ar

cb
cr
ab

==σ ,           (24) 

xr , yr  being the sample resistance in Ox, Oy directions, respectively. 

 One can observe that the units for the Hall constant and mobility are: 

.,1 111213 −−−− ===µ== TsVm
e
vCm

en
R

IS
ISH

IS
ISH      (25) 

3. Experimental set-up 

 The sample set-up presented in Figure 2, is made of: 

- an electromagnet with weak magnetic remnant steel core, which 

allows a better concentration of the magnetic field lines; 

- a box containing the p-type semiconductor sample that is studied. 

Figure 2. 

In Figure 3 we have the electric draft of the measuring circuits. In 

Figure 3a is given the draft for the measurement of the current through the 

sample (for different values of the d. c. bias applied on the sample) and of 

the Hall voltage. In Figure 3b is given the draft of the electromagnet circuit. 
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Figure 3. 

 Figure 3a presents the circuit that supplies the sample, including the 

sample P, a milliammeter mA, to measure the current i through the sample, 

a millivoltmeter  mV, to measure the Hall voltage (using the compensation 

method we obtain a more accurate measure of UH), the source S1, the 

potentiometer R1, and the switch K1. 

 Figure 3b presents the electromagnet circuit, including the 

electromagnet coil C, the ammeter A to measure the current I through the 

electromagnet, the potentiometer R2, the source S2, and the switch K2. 

4. Working procedure: 

1. Connect the sources S1 and S2 by plugging them and turning on the 

switches K1 and K2. Using the potentiometer R1 a constant current i through 

the sample is fixed. The values of the current i for which the measurements 

have to be performed are indicated on the desk. 

2. Using the potentiometer R2, vary the current I through the electromagnet 

coil from 0.2 A to the maximum value of 3A. 

3. For each value of I, read HU  using the millivoltmeter mV. 

4. Repeat the measurements for different values of the current i through the 

sample. The results will be written in Table 1, which contains the values of 

the induction B for different values of the current I through the coil. The 

sample sizes a, b, c, are given on the desk. The current density j is: 

ab
ij = .       (26) 
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Table 1 

UH (V) i (mA) ... 

I (A) j (A/m2)
B (T) ... 

0.0 0.016  
0.2 0.040  
0.4 0.068  
0.6 0.098  
0.8 0.128  
1.0 0.156  
1.2 0.170  
1.4 0.180  
1.6 0.190  
1.8 0.196  
2.0 0.202  
2.2 0.208  
2.4 0.213  
2.6 0.218  
2.8 0.222  
3.0 0.225  

 

5. Draw the electromagnet calibration curve ( )IBB = , in order to find the 

values of B for the coil current values different from those in Table 1. As 

when the current is flowing through both sample and coil these devices can 

go out of order, turn on the switches K1 and K2 only when we read the data. 

5. Experimental data processing 

1. Using the data from Table 1, plot on millimetric paper the dependencies 

)(BUU HH =  for j = const. Due to the non-linearity of the Hall effect and 

the sample heating during the measurements, we will not obtain straight 

lines; the tangents to the curves at the origin (B = 0) will have the slopes: 

....,,2,1, NkjaRm kHk ==     (27) 

 With the slopes 1m , 2m , ... Nm , obtained from the graphs, compute 

the values of the corresponding Hall constants: 
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 Compute the mean Hall constant:  

∑
=

=
N

k

k
HH R

N
R

1

)(1 .     (29) 

 The value of the Hall constant will be given in the form: 

HRHH RR σ±= ,     (30) 

where 
HRσ  represents the mean square deviation of the mean Hall 

constant, which is computed with the formula: 

( )
( )∑

=
−

−
=σ

N

k
H

k
HR RR

NNH
1

2)(
1

1 .       (31) 

2. Knowing the values of the Hall constant, the mean charge carrier (hole) 

concentration for the sample is determined using the relation (21): 

eR
p

H

1
= .          (32) 

The Hall mobility is determined from the relations (22), (24). The errors for 

p and Hµ  are computed taking into account that the other constants are 

supposed exact, so that the relative errors for p, Hµ  and HR  are equal. 

When processing the experimental data, all physical quantities are 

expressed in I. S. units. 

6. Questions: 

1.What means the Hall effect? 

2.What is the Hall constant? 

3.What is the Hall mobility? 


