
 

APPENDIX 
 

A. EXPERIMENTAL DATA PROCESSING 
 

I. ELEMENTS OF ERROR CALCULATIONS 
 

 Any experimental measurement is affected by errors. Depending on 

their cause, they can be divided into 3 categories: systematic, random and 

rough errors. 
 

1. The systematic errors have three possible sources: 

a) Observation errors. If, for instance, the observer reads the indications of 

the measurement device while looking at it in an oblique way, all of his 

readings will be higher or smaller than the real values. These errors can be 

completely eliminated by correcting the observer’s working method. 

b) Device errors. Any measurement device has a scale (for the digital 

display devices, we can consider the scale as implicit). No reading made on 

this scale can be more accurate than half of the smallest scale division. 

These errors can be reduced (by replacing the used device with a more 

accurate one), but they cannot be completely eliminated. 

c) Method errors. During the process of measuring, the system that is 

measured interacts with the measurement device, and this interaction 

modifies the results of the measurement. For instance, in order to measure a 

resistance, we can use the upstream or the downstream methods. In the first 

case the value obtained is bigger than the real one ( ( )RRRR Ameas += 1 ), 

and in the second one it is smaller ( ( )Vmeas RRRR += 1 ). We can 

eliminate these errors if we know the internal resistances of the 
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measurement devices (which means to measure other resistances), or if we 

replace this method with a bridge one, which compares the unknown 

resistance with other ones, assumed as known (this implies, again, 

measuring other resistances). Therefore, these errors can be reduced, but 

they cannot be completely eliminated.    

Whatever the causes of systematic errors may be, they share one 

feature: the value of an individual measurement is the same every time we 

repeat the measuring, therefore the error is also the same. For this reason, 

the calculation of errors for indirect measurements is done in the same way 

for all systematic errors. 

 The absolute error  of a measured quantity x represents the 

modulus of the maximum possible difference between the measured and 

the real value. The relative error 

xδ

xε  is expressed by the ratio between the 

absolute error and the modulus of the real value (under the condition that 

the denominator is non-null). 

 Then, if an indirectly determined value results from the relation 

yxz ±= ,           (1) 

its absolute error is 

yxz δ+δ=δ ,     (2) 

while if the value results from the relation 
1±= xyz ,            (3) 

its relative error is 

yxz ε+ε=ε .     (4) 

 

2. The random errors are due to statistical reasons. Experience has 

proven that all magnitudes directly measured can be classified in two 
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possible groups: discrete (for instance, the number of impulses recorded by 

a detector), and continuous. 

The theoretical analysis of the statistics of discrete quantities proves 

that their values are distributed in agreement with the Poisson probability 

distribution. According to this, the probability to obtain a number n of 

impulses for one measurement is 

( )
!n

aenp
n

a−= ,     (5) 

where 

( )∑
∞

=
=

0n
nnpa      (6) 

is the “true” value of the number of impulses (and, generally, it is a real 

number), and the error in the determination of the number a  (standard error 

or mean square deviation) is 

( ) ( ) anpan
n

a =−=σ ∑
∞

=0

2 .    (7) 

 If we make a number N of measurements in identical circumstances, 

obtaining the values , ( )1n ( )2n , ..., ( )Nn , then the estimate of the true 

value is given by the mean value 

( )∑
=

=≡
N

i
in

N
na

1

1~Est .         (8) 

 Then, the error affecting an individual measurement will be 

( ) ( )inin =σ      (9) 

and that of the average value will be 

N
n

n
~

~ =σ .           (10) 
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 Let us move on to the case of continuous quantities. Statistical 

physics prove that the values of these quantities are distributed in 

agreement with the normal (Gauss) probability distribution. Let us first 

consider the case of a single quantity x.  Then, its probability density will 

be 

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

−
−

σπ
=

+
≡

2

2

2 2
exp

2

1,

x

x

x

ax
dx

dxxxdp
xP ,       (11) 

where 

( )∫
∞

∞−

= dxxxax P      (12) 

is its “true” value and 

( ) ( )∫
∞

∞−

−=σ dxxax xx P2     (13) 

is its standard error. In the case when we make a number N of 

measurements under identical circumstances and we have as a result the 

variables , ( )1x ( )2x , ..., , then the estimate of the true value is given 

by the mean value 

( )Nx

( )∑
=

=≡
N

i
x ix

N
xa

1

1~Est .          (14) 

The error affecting an individual measurement ( )ix  will be 

( ) ( )( )∑
=

−
−

=σ
N

i
ix xix

N 1

2~
1

1     (15) 

(as we only have 1−N  independent deviations ( ) xix ~− ) and that of the 

mean value will be 
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( )
N
ix

x
σ

=σ~ .          (16) 

Let us now consider the case of  quantities , , ..., , which 

form a vector in a n -dimensional space. In this case, the normal 

distribution will be 

n 1x 2x nx

( )
( )

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−Γ−−

Γπ
=

−
axaxx T 1

2
1exp

det2

1
n

P ,       (17) 

where the covariance matrix Γ  is defined as  

( )( ) ( )∫
∞

−−=σσρ≡Γ xdaxax n
jjiijijiji xP,, ,      (18) 

ji,ρ  being the linear correlation coefficients (which fulfill the condition 

1, ≤ρ ji ). In particular, if the quantities , , ...,  are independent, 

the covariance matrix is diagonal, its non-zero elements being the squares 

of the considered quantities standard errors (their dispersions). 

1x 2x nx

 If we make a set of N  measurements under identical circumstances, 

and we have as a result the variables ( )1x , ( )2x , ..., ( )Nx , the estimates of 

the real values and of the standard errors for individual or mean values are 

given by the relations (14 – 16). If, on basis of the performed 

measurements, we evaluate a parameter expressed by a function , 

then, in order to estimate its true value and standard error, we must first 

evaluate the relative covariances 

( )xF

j

ji

a
,

ia

Γ
. If all these relative covariances 

are much smaller than the unit, then the true value of the quantity F  is 

estimated by 

( )x~~Est FFaF =≡      (19) 
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and the standard error is evaluated by the error propagation Gauss formula 
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where the linear correlation coefficients are determined by the relation 
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and the standard errors by the relations (15) and (16), respectively. If at 

least one relative covariance is not small enough, then we define 

( ) ( )( )iFiF x≡            (22) 

and we use the relations (14-16). 

 Generally, a quantity is affected by both systematic and random 

errors. In this case, the total error will be evaluated through the error 

propagation formula, as 

22
xxxs δ+σ= .           (23) 

Obviously, this relation allows us to establish in what case we can use but 

one type of error: when the other type is much smaller. Therefore, if we 

make several measurements and the differences between them are much 

bigger (smaller) than the reading (systematic) errors, this means that we 

can use only the random (systematic) errors. What is to be remembered is 

that the relations (20) and (23) will also be used in case some of the  

quantities are discrete, case when the standard errors of the respective 

quantities are evaluated with the relations (9) or (10). For instance, let us 

consider the case of the counting speed of a radiation detector with the dead 

time . If we measure  impulses in the presence of the radioactive 

ix

τ SN
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source during the time interval , and  impulses respectively for the 

laboratory radiation background during the time interval , then the 

counting speed for the source will be  

St BN

Bt

τ−
B
N

N
−

τ−
=

BBS tt
Nn

S

S
N

         (24) 

and its standard error will be 

( ) ( )τ−
+

τ−
=σ

BBB tt
B

SS
n N

N
tt

N

S

S
N

,      (25) 

because the relative errors for the time measurements, as well as the 

corresponding relative covariances, are negligible, so that we can use the 

Poisson distribution. In exchange, if we repeat the measurement under 

identical circumstances, its mean value and its standard error will be 

calculated with the relations (14 – 16), because the counting speed is a 

continuous quantity. 

 Finally, let us analyze the case of the evaluation of a parameter from 

the relation between two physical quantities. Most of the relations 

encountered (practically, all those encountered in the didactic laboratories) 

are linear or can be brought to this form. Thus, a relation of the form 

, where  and b  are the parameters to be determined, and 

 is a known function (completely determined by the measured value of 

( )xfbay ⋅+=

( )xf

a

x ) can be brought to the linear form with the help of the substitution 

. A relation of the form ( )xfX = ( )bxay exp=  can be turned linear with 

the help of the substitution yY log=  (the graph ( )xYY =  is a (simple) 

logarithmic scale representation, see Chapter II). A relation of the form 

 can be also linearized with the help of the substitutions bxay ⋅= yY log=  

and xX log=  (the graph ( )XY Y  is a double logarithmic scale =
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representation, see Chapter II). Consequently, we will analyze the method 

of determining the parameters  and n  from the relation m

y nmx += ,          (26) 

where 
x
ym

Δ
Δ

=  is the slope and 0== xyn  the ordinate at the origin (the 

abscissa at the origin being, of course, 
m
nx y −==0 ). 

 Let us consider the set of experimental pairs of data ( ) ( ){ }Niiyix ,1, =  

and let us define the expression 

( ) ( ) ( )( )∑
=

−−
−1
1

=
N

i
nimxiy

N
nmF

1

2,

)

.       (27) 

 It can be observed that this expression is equal to the square of the 

standard error for an experimental value of the quantity  with respect to 

the straight line (26). Under these circumstances, the best choice for the 

parameters  and  is the one that minimizes the function . By 

deriving the function with respect to  and  and by canceling the 

derivatives, we obtain 

y

m n ( nmF ,

m n

yx
x

ym ρ
σ

σ
= , , xmyn ~~ −= ,               (28) 

where the mean values, standard errors and linear correlation coefficient 

are calculated with the relations (14), (15) and (21). What is to be 

remembered is that the value of the linear correlation coefficient is a hint 

about the accuracy of the use of Eq. (26). Indeed, if the modulus of the 

coefficient is smaller than 0.5, then the quantities x  and  are practically 

non-correlated, and if the modulus of the coefficient is situated between 0.5 

and 0.9, then the quantities 

y

x  and  are correlated, but not linearly. A y
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good linear correlation is characterized by a modulus of the correlation 

coefficient greater than 0.95. 

 If we replace the values of the parameters  and  calculated with 

the expressions (28) in the relation (27), we will obtain the standard error 

of any value of the quantity  given by the equation (26), in particular of 

the ordinate at the origin n  

m n

y

2222
,1 xyyxyn m σ−σ=ρ−σ=σ        (29) 

(obviously, the standard error of the abscissa at the origin will be 

2
,1 yxx ρ−σ ). In order to calculate the standard error of the slope , let 

us observe that, if we divide the equation (26) by 

m

x  (while eliminating 

from the set of the experimental values of the pair corresponding to the 

zero value for x , if this value was measured), we will also obtain a linear 

relation, this time between 
x
1  and 

x
y :    

m
x

n
x
y

+=
1 ,          (30) 

where the roles of the parameters  and n  are reversed; therefore m

2
1

222
,11 xxyxyxxym n σ−σ=ρ−σ=σ .   (31) 

 In the case when the analyzed relation cannot be reduced to a linear 

shape, the unknown parameters will be determined with the help of 

computers, by using one of the numerous fitting programs that may be 

found. 

 A more special case is that of an extremum determination. If we have 

a relation ( )xfy =  with a relatively slight variation and, in a restricted 

domain of values for x , a clear-cut extremum for , this can be very well 

described by the Lorentz probability distribution  

y
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( )
( ) 22222

22

4

41

xax

x
x

xx

x

x σ+−

σ
⋅

σπ
=P ,     (32) 

where 0≥x  and 0>σ>> xxa when  ( 0<x , 0<xa ,

0

 a similar analysis can 

be made; in the case when =xa Eq. (32) becomes , 

( )
2

2

x

x

σ+

σ
2

1

x x
x ⋅

σπ
=P , where ∞<<∞− x ). It can be seen that, like in the 

Gauss’s distribution case,  is the most probable value for the variable xa x  

( ( )
x

xa
σπ

==
1

maxPP ), the limits of the domain of values for x  being the 

least probable ones (actually, they are impossible, ( ) ( )0 mi 0n =∞ == PPP ). 

More than that, it can also be seen that the equation 

( )
σπ

=
+

=
2

1
2

minmax PP
P x  has the solutions xxxa σ±σ= 22

2,1x + , 

satisfying the condition x
xx

σ=
−

2
21 . Therefore, in this situation, the 

standard error for the position of the function ( )xfy =  extremum is given 

by the half of the difference between the positions of the points for which 

the equality 

( )
2

minmax yy
xf

+
=       (33) 

is satisfied. Here minmax yy −  is the variation of the function in the region 

of the extremum taken into consideration. 

3. The rough errors have as their causes either the observer’s lack 

of attention or some accidental malfunction of the measuring device and 

must be eliminated from calculations. Generally, this is easy to do, because 
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these values are strongly different from the others. However, it is good to 

define accurate criteria for eliminating the rough errors. 

 Let us consider the case of a continuous parameter x . According to 

the normal distribution, the probability of obtaining, in the measuring 

process, a value that should not differ from the true value xa  by more than 

xxσζ  (
x

x
x

ax
σ
−

=ζ  being the reduced deviation of the quantity x ) is 

given by the probability integral 

( ) ∫
ζ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

π
=ζΦ x dzz

x 0

2

2
exp

2
      (34) 

and it is called a confidence level. Just as an additional information, 

,  and ( ) 6827,01 =Φ ( ) 9545,02 =Φ ( ) 9973,03 =Φ . 

 The choice of the confidence interval for an individual value ( )ix , 

defined as ( ) ( ) ( ) ( )[ ]ixixixix sxsx ζ+ζ− ~,~ , where  is the total error that 

affects the individual value 

( )ixs

( )ix , given by the relation (23), is made on the 

basis of the condition 

( )( ) ( ) ( )
( ) 1=

ζ
+ζΦ

ix

s ixix
ix       (35) 

(if , then the half-width of the corresponding relative confidence 

interval, 

( ) 0=ix

( ) ( )
( )ix
s ixixζ , will be replaced by the average of the half-widths of 

the intervals for the neighboring individual values). Then, if an individual 

value  does not fit in the confidence interval, this means that  is a 

rough error and it must be eliminated from the calculations. 

( )ix ( )ix

 Obviously, equation (35) is a transcendental one, and it can only be 

solved numerically. When there is no such possibility, we can choose a 

conventional value for the level of confidence and therefore for all the 
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confidence intervals. The usual choice for the reduced deviation is the 

value ( ) 3=ζ ix ; the criterion for rough error elimination thus obtained in 

this way is known as the  (Massey) criterion. σ3

 When the rough errors are eliminated, the mean value and the 

standard error are recalculated and the rough error elimination criterion is 

reapplied. The process will be repeated until all the remaining values 

satisfy the criterion. 

 In the case of linear correlations, the conditions for the integral of the 

probability density (17) give the chosen confidence level is  

( )
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,1 yxρ−= ,         (36) 

where the reduced deviations for x and  are evaluated with the relation 

(35) (or defined by the  criterion), and the total errors of the individual 

values depend on the fact that an experimental point 

y

σ3

( ) ( )( )iyix ,  can be 

measured several times, under identical circumstances. The equation (36) 

defines a confidence ellipse. If the point with the coordinates ( ) ( )( )iyi ,x  

belongs to the straight line (26), this one must intersect with the confidence 

ellipse. Obviously, the intersection condition will be reduced to a second 

order equation, which admits real solutions if and only if its discriminant is 

positive, that is if 
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where xσ ,  are the errors for the entire set of experimental points, given 

by the relation (15). In particular, if 

yσ

 

( ) ( ) ( ) ( ) ( )iss

y

iyiy

x

ixix ζ≡
σ

ζ
≈

σ

ζ
,    (38) 

the condition (37) becomes 

( ) ( ) ( ) ninimxiy σζ≤−− .           (39) 

If, we also fix the value of the reduced deviation ( )iyζ  by means of the 

condition 

( ) 12
,

2 =ρ+ζ −
yxiy      (40) 

(for instance, the condition ( ) 3=ζ iy  is equivalent to a linear correlation 

coefficient 9428,0, =ρ yx , while 95,0, =ρ yx implies ( ) 2026,3=ζ iy ), then 

the condition (37) becomes 

( ) ( ) ( )iysnimxiy ≤−− ,         (41) 

condition that can immediately be generalized for an arbitrary dependence 

 under the form ( )xfy =

( ) ( )( ) ( )iysixfiy ≤− .      (42)  

 

II. PRESENTATION OF THE EXPERIMENTAL RESULTS 
 

 The presentation of experimental results in a report will be made in 

agreement with a set of rules: 

1. All measured data must be present in the paper. 

2. All measured data must be expressed in the International System 

units, their multiples or sub-multiples, or in tolerated units, under the 

form { } xx x= , where x  is the physical quantity, { }x  is its 
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numerical value, and x  is its measure unit. If it is necessary to use 

an exponential format for the numerical value, only one non-null 

figure will be written before the decimal point. For instance, the 

value V00006563.0=U  will be written either as V  

or V63,

10563,6 5−⋅=U

65 μ=U . 

3. All sets of experimental data, as well as those calculated for each 

experimental point alone, will be presented in Tables. The Table 

head must contain for each line (column) the name of the physical 

quantity and in parenthesis, the used measure unit, in the form: 

( )xx . In the case when the exponential format is used, the order of 

magnitude will also be introduced. For the previous example, the 

form will be either ( )V10U 5−  or ( )VU10  respectively, the 

corresponding numerical value from the table being 6.563, or 

( )VU μ , the corresponding numerical value being 65.63. 

5

4. In the case when the scale of the measuring device is not directly 

graded in IS units or in their multiples or sub-multiples, in the Table 

will appear two lines (columns), the first with the measured values 

expressed in divisions, and the second with the values expressed in 

IS units. This supplementary line (column) can be left out only when 

the dimension of the respective quantity does not directly interfere in 

the calculations of the final results. 

5. For all the used devices, the scale factor will also be mentioned in 

the report, under the form { } xdivx x=div1 . These factors are 

necessary not only for transforming the divisions in IS values, but 

also for evaluating the systematic errors. 
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6. The calculation of errors will be made for all the obtained results. 

The final results will be expressed in the form { } { }( ) xx x~sx~ ±= . 

The number of decimals is determined by the condition that the last 

two should be affected by the error. For instance, if the value 

obtained in IS units is 745.336286735, and the value of the error, in 

the same units, is 0.00891467668, the result will be presented in the 

rounded form 745.3363 ± 0.0089. 

7. For all the studied correlations there will be graphs made on 

millimetric paper. These graphs have to obey the following rules: 

i. The size of a graph must be at least A5 (half of an A4 page 

format), and the length / width ratio must fit between 2/3 and 

3/2. 

ii. At the ends of the coordinate axes will be written the physical 

quantities and the units of measure, the same as in the heads of 

each Table. 

iii. The axes must not necessarily intersect at the origin. If, for 

instance, the experimental values lie between 23.89 and 24.44, 

the corresponding axis must include values between 23.85 and 

24.45. 

iv. The experimental values will not be marked on the axes. 

They do appear in Tables. On the axes will only be marked 

round values, thus allowing the easy reading of any point from 

the graph. In the previous example, on the axes will be written 

values in paces of 0.05 or 0.1 (that is 23.85; 23.90; 23.95 etc. or 

23.85; 23.95; 24.05 etc.). 

v. If necessary, either for the linearization of a correlation, or 

because the represented quantity varies by several orders of 
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magnitude, representations in simple logarithmic scale (only 

one logarithmic quantity) or double logarithmic scale (both 

logarithmic quantities) will be used. This means that on the axis 

will be written the quantity x  (with its unit and rounded values), 

but the distances between these rounded values will be 

measured proportionally with the logarithm of their ratio 

(therefore, on the axis, xlog – natural or decimal, following the 

necessities – will be marked). 

vi. On the graph there appear all the experimental points (rough 

errors included), with error bars (vertical bars, varying from 

 to ( ) ( )iysiy − ( ) ( )iysiy + , and, if necessary, similar horizontal 

bars too). The curve must not go through the points, but 

through the confidence ellipses (or, in the first approximation, 

through the error bars), except for the points (error bars) that 

correspond to rough errors. The only graphs that must go 

through all the points (bars of errors) without tests for 

eliminating the rough errors, are the calibration (gauge) curves. 

vii. In the case of linear representations, the slope of the straight 

line m  will not be mistaken for the tangent of the angle 

formed by it with the abscissa, tan α. The slope of the straight 

line is a physical quantity, with a measure unit, and that depends 

only upon the experimental results, while the tangent of the 

angle formed by the straight line with the abscissa is a non-

dimensional number and depends upon the representation scale 

chosen for the graph. 

viii. If the linear relation is only a first approximation, especially 

valid for certain values of the parameter on the abscissa (for 

 220



 221

instance, for small values of the parameter) the experimental 

curve will be presented, and the parameters of the straight line 

searched for are given by those of the tangent at the curve in the 

maximum precision domain (in the suggested example, the 

tangent at the origin). In order to evaluate the errors, there will 

be made several sets of measurements, and then will be 

calculated the mean and standard error of the slope and/or of the 

ordinate (abscissa) at the origin. 

ix. The results evaluated from the graph (slopes, ordinates and/or 

abscissas of certain points, respectively) are not present on the 

graph, but in the text of the paper, together with the other 

results. 

x. The graph of a discrete quantity is not a continuous curve, but a 

histogram (a graph in steps). 

xi. Graphs are drawn in pencil, in order to be easily corrected. 

xii. If on a graph there are several curves, they are to be drawn in 

different colors (the experimental points included), in order to 

be easily differentiated, and in a corner of the graph there will 

be inserted a caption (a short segment from each color, with the 

explanation of the curve (the values of the parameters) drawn in 

that color). If one has no colored pencils, the experimental 

points belonging to different curves will be marked with 

different signs, while the caption will contain those signs 

instead of the colored segments. 


	I. ELEMENTS OF ERROR CALCULATIONS

