Fresnel relations

(electric field normal to the incident plane the s-case)

Geometry for the electric field normal to the incident plane:

Electric field \underline{I} to the incident plane

If $\overrightarrow{\mathbf{E}}_{i} / /$ incident plane, the magnetic field is normal to this plane. The figure can be deduced from the one above, keeping in mind that $\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}} / / \overrightarrow{\mathbf{k}}$.

$$
\overrightarrow{\mathbf{E}}_{i}=E_{i} \overrightarrow{\mathbf{u}}_{y} \quad \overrightarrow{\mathbf{H}}_{i}=\frac{1}{Z_{i}} E_{i} \overrightarrow{\mathbf{u}}_{i} \times \overrightarrow{\mathbf{u}}_{y}
$$

where:

$$
\overrightarrow{\mathbf{u}}_{i}=\sin \theta_{i} \overrightarrow{\mathbf{u}}_{x}+\cos \theta_{i} \overrightarrow{\mathbf{u}}_{z}
$$

The continuity of the tangential components of the electric field writes as:

$$
E_{0 i}+E_{0 r}=E_{0 t}
$$

and that of the magnetic field is:

$$
\left(H_{0 r}-H_{0 i}\right) \cos \theta_{i}=-H_{0 t} \cos \theta_{t}
$$

or:

$$
\left(E_{0 i}-E_{0 r}\right) \frac{\cos \theta_{i}}{Z_{1}}=E_{0 t} \frac{\cos \theta_{t}}{Z_{2}}
$$

Ratios:

$$
r_{p e r p}=\left(\frac{E_{0 r}}{E_{0 i}}\right)_{\text {perp }} \quad t_{\text {perp }}=\left(\frac{E_{0 t}}{E_{0 i}}\right)_{\text {perp }}
$$

are known as the Fresnel coefficients for reflection and transmission in the perpendicular case. They are obtained immediately from the above relations:
$r_{\text {perp }}=\frac{Z_{2} \cos \theta_{i}-Z_{1} \cos \theta_{t}}{Z_{2} \cos \theta_{i}+Z_{1} \cos \theta_{t}}=\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)}$
$t_{\text {perp }}=\frac{2 Z_{2} \cos \theta_{i}}{Z_{2} \cos \theta_{i}+Z_{1} \cos \theta_{t}}=\frac{2 n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{i}+\theta_{t}\right)}$

The equalities are exact in non-magnetic materials, where $\frac{Z_{1}}{Z_{2}}=\frac{n_{2}}{n_{1}}$.

For the parallel situation, $\overrightarrow{\mathbf{E}}_{i} / /$ incident plane, the results are:

$$
r_{/ /}=\left(\frac{E_{0 r}}{E_{0 i}}\right)_{/ /} \quad t_{/ /}=\left(\frac{E_{0 t}}{E_{0 i}}\right)_{/ /}
$$

$r_{/ /}=\frac{Z_{1} \cos \theta_{i}-Z_{2} \cos \theta_{t}}{Z_{1} \cos \theta_{i}+Z_{2} \cos \theta_{t}}=\frac{n_{2} \cos \theta_{i}-n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}$
$t_{/ /}=\frac{2 Z_{2} \cos \theta_{i}}{Z_{1} \cos \theta_{i}+Z_{2} \cos \theta_{t}}=\frac{2 n_{1} \cos \theta_{i}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)}$

Exercise 1. Show that:

$$
\frac{n_{2}}{n_{1}} t_{/ /}-r_{/ /}=1 \quad t_{\text {perp }}-r_{\text {perp }}=1
$$

Remark: The above exercise shows that some Fresnel coefficients could be >1, e.g. if $r_{\text {perp }}$ is positive $t_{\text {perp }}=1+r_{\text {perp }}>1$. This means the transmitted amplitude $E_{o t}$ is larger than the incident one. Is this impossible?

Energy transfer by reflection and transmission

The reflection factor is defined by:

$$
R=\frac{\text { flux of reflected energy }}{\text { flux of incident energy }}
$$

The transmission factor is defined by:

$$
T=\frac{\text { flux of transmitted energy }}{\text { flux of incident energy }}
$$

The results are:

$$
R=\frac{n_{1}}{n_{1}} \frac{\overrightarrow{\mathbf{u}}_{r} \cdot \overrightarrow{\mathbf{u}}_{n}}{\overrightarrow{\mathbf{u}}_{i} \cdot \overrightarrow{\mathbf{u}}_{n}} \frac{E_{0 r}^{2}}{E_{0 i}^{2}}=r^{2}
$$

$$
T=\frac{n_{2}}{n_{1}} \frac{\overrightarrow{\mathbf{u}}_{t} \cdot \overrightarrow{\mathbf{u}}_{n}}{\overrightarrow{\mathbf{u}}_{i} \cdot \overrightarrow{\mathbf{u}}_{n}} \frac{E_{0 t}^{2}}{E_{0 i}^{2}}=\frac{n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}} t^{2}
$$

As we have neglected absorption, $T+R=1$.

From Wikipedia, the article The Fresnel equations

The Brewster angle is the angle for which there is no reflected wave with electric field parallel to the incidence plane.

