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Fields, vectorial analysis 

 

1. Definition and examples 

When two electric charges are close enough they experience actions from each 

other. A similar phenomenon appears between two material bodies which attract each 

other. We can't say the interaction is established instantaneously (why not?). The 

actual model assumes that each body modifies in a specific way the region around it. 

We say that in the neighbor region a field appears.  

Types of fields: 

- elastic     -      scalar 

- gravitational    -      vectorial 

- electromagnetic. 

 

You know that a positive charge Q will attract a negative one or repel another 

positive charge (what about the force upon itself?) denoted by q. Many of you know 

also the magnitude of the Coulomb force involved:  
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If 0Qq  bodies move away, where a negative value of F implies attraction. 

Rather than saying that Q repels q directly, we say that Q affects the surrounding 

space by creating an electric field. The interaction is mediated by the field.  

For the electric case, we define the field strength at a point, E


, as the force per 

unit charge that would act on a small positive test charge placed there. It is a vector, 

as the force is. Similar arguments hold for the gravitational field, where 

g


characterize it. 

 

2. Work. Line integral  ▄ 

 

If a force is constant, work is defined by cosFRrFW 


.  

What if the force  – or the field – varies? Elementary work is rdFW


 . 
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The total work made by the force when the body moves between points A and B 

is given by the  line integral (or path integral): 
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The integral depends on: 

- the limits as in usual integral 

- the integrand as in usual integral 

- the actual curve between the two points unlike in usual integrals 

How do we compute a path integral? See Mathematical appendix "Path 

integrals". ▄ (not for the exam) 

 

3. Field lines.  

One helpful way of visualizing an electric (magnetic…) field is with field lines. 

Field lines are not real, but their pattern helps us to understand interactions inside the 

field. The magnetic field lines of a bar-magnet are given in Fig. 1. Magnetic lines get 

out North pole  and enter South pole. 

 

 

 

 

  Fig. 1. Magnetic lines for a bar magnet.  
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Electric field lines come out + charges and enter – charges. 
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4. Flux. Gauss law. 

 

Model: the electric field strength is represented by the "density" of the field 

lines – that is the number of lines per unit area perpendicular to the field lines  

 

Fig.2. Field lines  

   
fieldthetonormalArea

linesfieldofNumber
E    (3) 

 

The number of lines per unit area is the "density of lines". This number of field 

lines is in turn proportional to the charge producing the electric field, 

 

number of lines Q     (4) 

 

It turns out that the proportionality factor is 
1 , where   is the material permittivity. 

If charges are spread in a non-uniform way the field is not constant, neither as 

strength nor as direction, but the quantity SE


d  has the same meaning, the local 

number of field lines. In the situation of Fig. 3 the charge Q is surrounded by a closed 

surface  .  
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 Fig.3. Electric flux through a closed surface 

 

The integral over the closed surface   of the quantity SE


d  is the electric flux: 

 

    
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 SdEelectric


    (5) 

 

The Gauss law (or the first Maxwell law) says that the electric flux equals the ratio of 

the total interior charge to the dielectric permittivity ( 0  in vacuum): 
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The integral must be thought as the limit of the sum   SE


. Electric lines begin in 

the positive charges and end in the negative ones. 

 

 5. The flux law for the magnetic field 

The magnetic lines are closed lines; there are no magnetic mono-poles. The flux 

law for the magnetic induction is: 

 

    0 SdB


     (7) 

whatever the closed surface.  
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 6. Volume integral 

 

Spherical coordinates are ,r  and  , as in Fig. 4 below:  

 

 

 Fig. 4. Spherical coordinates (left) and spherical element of volume (right). 

 

An element of volume of the sphere is the "spherical prism" with sides r , 

r  and sinr : 

     ddrdrV sin2     (8) 

 

The volume of the sphere with radius R is: 
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Remark: on Fig. 4 right you may see also "the element of surface" on the 

sphere: 

    ddsind 2rS       (10) 

 

The surface of the sphere will be: 

 



 7 

  2

2

00

22 4sinddsin RddRRS

sphere





   (11) 

 

 7. Divergence. Gauss-Ostrogradski law 

 

The total charge of a body having a charge density defined by 
 volumeofunit 

chargelocal
  is 

given by:  

    VQQ

volumevolume

  dd     (12) 

 

The divergence  of a vector E


 – Ediv


 – is defined as the limit of the ratio of the 

vector flux through a small closed surface enclosing the small volume V and this 

volume: 

   0Vwhenlim 
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Going to finite quantities we get the Gauss-Ostrogradski theorem: 

 

    
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 V

dd VESE
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    (14) 

 

where V  is a volume closed by the surface  . From (6), (12) and (14) we get 

the first Maxwell law in local form: 
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For the magnetic induction: 

 

     0B


    (16) 
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 8. Circulation. Curl. Stokes law 

 

The curl (rotor in Romanian) is a vector whose projection upon the normal to a 

surface element is the limit of the ratio between the circulation over a closed curve   

limiting the surface S  and this surface: 
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Going to finite quantities we get the Stokes theorem:  

 

    SdErdE
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The geometry – hat surface: 

 

 

 Fig. 5. Geometry of the Stokes relation 

 

 

 


