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Waves 

 

What are waves ?  

An oscillation is a periodic movement of a material point. 1D harmonic 

oscillations are sinusoidal movements; the same is true for 3D harmonic oscillations, 

but now the amplitude and the elongation are vectorial quantities. For example 1D 

free oscillations movement is described by the function:  

 

      0sin   tat     (W1) 

The Greek letter   represents the movement of a single point. 

A wave is the propagation of an oscillation or of a disturbance in a medium. 

It appears when the local movement of a point changes the positions and the 

movements of adjacent material points. These changes in turn modify the positions 

and the movement of other points, the result being changes in many places.  

Remark: this description applies mainly to elastic waves. Electromagnetic 

waves are not to be associated with macroscopic movements, but with macroscopic 

changes of electric and magnetic fields in a whole region. 

Types of waves: longitudinal (sound in air, compression waves in rods) and 

transverse (electromagnetic, sound in strings).  

See: 

https://www.google.ro/search?q=transverse+waves&rlz=1C2FDUM_enRO472RO47

2&tbm=isch&tbo=u&source=univ&sa=X&ei=KnqTUraLM7P2yAPhxoHoCg&ved=

0CCwQsAQ&biw=1513&bih=752 

for transverse and longitudinal waves 

 

 

 

Transverse wave 

https://www.google.ro/search?q=transverse+waves&rlz=1C2FDUM_enRO472RO472&tbm=isch&tbo=u&source=univ&sa=X&ei=KnqTUraLM7P2yAPhxoHoCg&ved=0CCwQsAQ&biw=1513&bih=752
https://www.google.ro/search?q=transverse+waves&rlz=1C2FDUM_enRO472RO472&tbm=isch&tbo=u&source=univ&sa=X&ei=KnqTUraLM7P2yAPhxoHoCg&ved=0CCwQsAQ&biw=1513&bih=752
https://www.google.ro/search?q=transverse+waves&rlz=1C2FDUM_enRO472RO472&tbm=isch&tbo=u&source=univ&sa=X&ei=KnqTUraLM7P2yAPhxoHoCg&ved=0CCwQsAQ&biw=1513&bih=752
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Longitudinal wave – sound 

 

 

Polarization of elastic waves 

 

Notice: there is a huge difference between the velocity of the movement of a 

point, defined as  
t

t
d

d
   and the propagation velocity of the wave pv ; the 

definition will be given later, but a good estimate is to consider it as the distance the 

wave covers in a second. Example: a wave on the sea moves towards the shore at, say, 

5m/s; this is not at all the velocity with which water drops move inside the wave, 

mainly up and down.  

Let’s assume a 1D medium, like a string and locate a point along the string with 

abscissa x. When the time has the value t the movement of the material point situated 

at abscissa x is given by a function of both variables  tx, . Assume further that the 

medium is homogeneous, such that the propagation velocity pv  is a constant. If the 

source of oscillations is placed in the origin 00 x  and has no phase shift, its 

equation is    tat  sin,0  . This is a harmonic oscillation, because it contains a 

single frequency. What would be the movement of the point situated at abscissa x? 

What would be the expression for  tx,  ? Obviously, what happens in the origin at 

the moment t=0 should happen in the point x after the propagation time given by 

pp vxt  . So we write: 

 

      kxta
v

x
tattatx

p
p 














 


 sinsinsin,   (W2) 

where  
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pv
k


     (W3) 

is the wave vector. Eq. (W2) represents a 1D wave traveling in the Ox direction. The 

same could be said about  kxtcosa   or  ]exp[ kxtia  . 

Question: what can we say about the expression  ]exp[ kxtia   ? 

 

Equation of a 1D wave 

 

What is the equation satisfied by the function  t,x  ? Let’s compute the second 

partial derivatives of (W2): 

   kxta
v

kxtak
x p











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2
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   kxta
t








sin2

2

2

 

Hence, by dividing the time derivative with the constant 2
pv  we get a term equal to 

the spatial derivative. The wave equation is obviously: 

 

0
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2

2
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2
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tvx p
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  (W4) 

 

In 3D the equation is: 
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 (W5) 

 

with  tzyx ,,,  the quantity describing the type of wave: displacement, pressure, 

electric or magnetic field, etc.  

Exercise: Verify that (W2) is a solution of (W4).  

 

Equation of 1D transverse waves in a string 

Assume a homogeneous string of length d and constant section. Denote by x  its 

linear density (kg·m-1). In equilibrium the string lies along the Ox axis. Out of 

equilibrium, its position appears as in Fig. below: 
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Let’s take a small part of the perturbed string, between x and x+dx. Tension )(xT


 

and )( dxxT 


 act on the two ends. Assume their moduli are equal,  xxTxT d)(  .  

 

The wave being transverse, all the movement is done along the vertical direction 

and Newton 2nd law for the portion (x, x+dx) writes: 

 

    


sinsindd
2

2

xTxxT
t

m 



  

Angles are very small, sin functions may be replaced by tan functions, these 

being equal to derivatives with respect to x: 

 

    
   
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
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This equation above has the form (W4), if we agree that the velocity of 

transverse waves is 
x

t
T

v


 . 

 

 

D’Alembert solution (method of characteristics) 

 

D’Alembert’s idea: variable changes tvxu p  and tvxw p  

Eq. (W4) becomes (for multivariable derivatives see math app 2 and 3) 
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    0
2






wu


    

That implies the first derivative 
u


 does not depend on w and vice-versa, 

w


 

does not depend on u. Therefore  

 wf
w

2



   uf

u
1




  

 

Multiply the first relation above with dw and the second with du and add: 

 

    wwfuufw
w

u
u

ddddd 21 











   

 

and we may integrate to get: 

 

       wgufwu ,  

or 

       tvxgtvxft,x pp     (W6) 

 

So the variables appear only as linear forms tvx p  and tvx p . f and g are any 

function that behaves nicely enough (second derivatives continuous).  

Remark: our first solution (W2) does not  have the form (W6) above. Where is the 

error? Hint: write 

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
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






 tvx
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p


sin  and the ratio 

pv
k


  is a 

constant.  

For Fourier solution, see lectures. Predau metoda Fourier scriind 

  )t(T)x(Xt,x   si eparand variabilele gasesc solutia pt. 00 )(X , 0)a(X  

 

 

 

 

Wave characteristics 

Rewrite (W6):    

     tvxgtvxftx pp ,  

The first function is the direct wave, it travels towards the positive Ox axis. 
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The latter is the inverse wave, it travels towards the negative Ox axis. 

Their arguments are called phases.  

The loci of points with the same phase are known as equiphase surfaces. The most 

remote equiphase surface is the wave front. According to their form, waves in 3D may 

be plane, spherical, cylindrical, etc. For real waves these forms may be very intricate 

and may change during the propagation. To avoid difficulties we shall study mainly 

harmonic waves, with equations: 

 

   kxtsinat,x     in 1D   (W7) 

and 

    rktatr


  sin,   in 3D    (W8) 

 

The equation of the equiphase surface for the direct wave is: 

 constkxt   or consttvx p     (W9) 

Differentiating Eq. (W9): 

 0dd  xkt   or 0dd  tvx p ,  

hence the phase velocity    
kt

x
v p




d

d
   (W10) 

This explains the meaning of the phase velocity: it is the velocity with which move 

the equiphase surfaces. For the inverse wave the equiphase surfaces propagate with 

velocity  

    pv
t

x


d

d
    (W10') 

For periodic amplitudes there are many equiphase surfaces having the same 

phase (mod(2m )) The distance between two adjacent equiphase surfaces is called 

wavelength. 

At a certain point x0 in space the disturbance is a function of time only: 

   tFt,x 0 . If this function is periodic is very important, because each frequency 

i the visible domain (see later electromagnetic waves) corresponds to a certain colour. 

Let's then consider that      tsinatF , where a is called amplitude and the 

argument of the cosine function is the phase. The quantity  

 

    
T

1

2





     (W11) 
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is called frequency and represents the number of oscillations per second. The 

angular frequency   is the number of vibrations per 2  seconds. T is the period of 

the vibrations. Such types of solutions are called harmonic with respect to time. 

A very simple and important case is the harmonic plane wave (hpw) given by  

 

        pvx-tsinsin  akxtat,x     (W7') 

 

The equality    t,xt,x   , where the wavelength   is defined by 

 

   Tvv pp 





2
     (W12) 

 

The function  tx,  or  tr ,


  is also called amplitude. The energy transported 

by the wave is proportional with the square of the amplitude. The energy passing in 

the unit of time through the unit of surface is the intensity (units of W/m2). We shall 

enter into details for electromagnetic waves only.  

 

 

Interference and diffraction 

O simpla introducere, restul la unde elmgn 

 

The most important characteristic of waves is their ability to interfere and 

to diffract. Every time a physical entity display interference or/and diffraction it 

is certainly a wave.  

The interference is the superposition of waves in the same region. When 

waves from two or more sources superposes what we observe usually is an increase of 

the overall intensity. This is the incoherent superposition of waves. If the two sources 

are coherent, one observes a totally different spatial pattern formed by maxima and 

minima which remain stable during the observation. This is the so-called coherent or 

stationary interference. We shall deal with with this type of superposition when we 

study electromagnetic waves; it is the foundation of interferometry. Interferometry 

with elmgn waves is one of the most accurate measurement methods in physics. 

The diffraction is the deviationfrom the straight propagation when a wave is 

incident upon an obstacle with wedges sharp enough, i.e. of the order of the 

wavelength.  
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Example: Two cosine waves. 

Two waves superpose in the same region; the first travels the path 1x , the second 

one the path 2x . Assume: 

- same frequency, therefore the same wave vector k 

- the movements have the same direction (other situations are studied in 

the particular case of electromagnetic polarized waves) 

- the same amplitude (for simpler formulae).  

   

   

   22

11

cos,

cos,

kxtatx

kxtatx









    (W13) 

The resulting amplitude is: 

      








 








 



2
cos

2
cos2

coscos,

2121

21

xx
kt

xx
ka

kxtkxtatx





   (W14) 

This is a cosine wave with the same frequency and with amplitude modulated by the 

factor 






 

2
cos 21 xx

k . The intensity is proportional to the square of the amplitude: 

     xkaxxka
xx

kaI 






 
 cos12cos12

2
cos4 2

21
22122   (W14) 

Here 21 xxx   is the difference between the paths traveled by the two waves. This 

is shown in the following graphs. 
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Intensity dependence on the horizontal 

position x and on the vertical phase shift 

k x . Quantity x  is the difference in the 

paths of the two waves. 

Intensity dependence on the horizontal 

position x Constant phase shift. 

 

 

Conditions for maxima and minima:  

Max for  mxmxkaI  or,2for4 2
max    (W15’) 
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Min for    
2

12or,12for0min


  mxmxkI  (W15’’) 

Question: study the case when the amplitudes are not equal. 

Important Remark: The phase shift due to different paths is given by: 

xx
v

xk
prop







2
   (W16) 

In the optical domain m 5.0 , hence a very small path difference gives a 

measurable phase shift. E. g. for mx 005.0 , 6.3 , an easily detectable 

angle. Optical interference is a very accurate method to measure lengths. 


