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Fourier method to solve wave equation 

 

1D waves in a string 

 

String: the ends at x=0 and x=a are fixed, so     000  t,a,t,   (limit 

conditions) 

 

 

Equation: 
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Idea: Eq. is linear (why ?) so a linear combination of particular solutions is a 

solution. (example) 

Search a particular solution of the form  

 

          tTxXt,x      (2) 

 

Calculus: 
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Divide by X(x)T(t) and get 
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 xX

xX 
 depends only on x. 

 
 tT

tT 
 depends only on t. Their sum is a constant (=0) 

only if each ratio is constant (discussion) Or else the equality would be true only for 

certain particular values of x and t. This is not what we look for. Hence 
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tT
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Introduce (4) in (3)  
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For such a link between px vand,k   Eq. (3) is fulfilled, so (2) is a particular 

solution for (1). Eqs. (4) are simply equations for free oscillations, with solutions sin, cos 

or imaginary exponentials, at our convenience. 

Choose  

 

           tixkBxkAtTxXtx xx  expcossin,    (6) 

 

Use limit conditions  
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We get an infinity of solutions depending of the index n: 
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A general solution will be 
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Remember 
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characteristic pulsations and periods. 
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The fundamental: n=1, with wavelength twice the length of the string, a21   and 

the period 
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Exercices:  

1. Give vp and a, find wavelengths, periods, frequencies and k’s for n=1, 2, 3,... 

vp1=340 m/s (sound in air), vp2=3000 m/s (sound in metal); a1=0.5 cm, a2=10 cm, 

a3=2m, 

Any other numeric application containing the above quantities. 

 

 



4 

 

2D waves in a membrane, 3D waves in a parallelipipedic bar 

 

Generalization of Eq. (1) and of particular solution (2) 
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      tTxXt,x   →          tTzZyYxXtzyx ,,,   (2’) 

 

Limit conditions for a bar axbxd:  

 

     0,,,,0,,,0  tzyatzy   

  

     0,,,,0,,0,  tzbxtzx   

 

    0,,,,0,0,,  tdyxtyx   

 

(3) becomes 

 

 
 
 

 
 

0
1

2







tT

tT

vxX

xX

p

 → 
 
 

 
 

 
 

 
 

0
1
2













tT

tT

vzZ

zZ

yY

yY

xX

xX

p

  (3’) 

 

(4) becomes 
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with the condition (5) becoming  
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Solution as generalization of (6) 

 

         tixkBxkAtTxXtx xx  expcossin,   → 

 

       tizkFzkEykDykCxkBxkAtzyx zzyyxx  expcossincossincossin,,,   

 

Initial conditions in x=0, y=0, z=0 cancel cosine terms, we get 

 

   tizkEkCxkAtzyx zyx  expsinsinsin,,,   

 

Initial conditions in x=a, y=b, z=d generalize (7): 
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Exercises and numerical applications as above. Examples welcome.  


