Fourier method to solve wave equation

1D waves in a string

String: the ends at $x=0$ and $x=a$ are fixed, so $\psi(0, t)=0, \psi(a, t)=0$ (limit conditions)

Equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{1}
\end{equation*}
$$

Idea: Eq. is linear (why ?) so a linear combination of particular solutions is a solution. (example)

Search a particular solution of the form

$$
\begin{equation*}
\psi(x, t)=X(x) T(t) \tag{2}
\end{equation*}
$$

Calculus:

$$
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\frac{d^{2} X(x)}{d x^{2}} T(t)-\frac{1}{v_{p}^{2}} X(x) \frac{d^{2} T(t)}{d t^{2}} \equiv X^{\prime \prime}(x) T(t)-\frac{1}{v_{p}^{2}} X(x) T^{\prime \prime}(t)=0
$$

Divide by $X(x) T(t)$ and get

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}-\frac{1}{v_{p}^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=0 \tag{3}
\end{equation*}
$$

$\frac{X^{\prime \prime}(x)}{X(x)}$ depends only on $x . \frac{T^{\prime \prime}(t)}{T(t)}$ depends only on t. Their sum is a constant ($=0$) only if each ratio is constant (discussion) Or else the equality would be true only for certain particular values of x and t. This is not what we look for. Hence

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}=-k_{x}^{2}=\mathrm{const} \quad \frac{T^{\prime \prime}(t)}{T(t)}=-\omega^{2}=\mathrm{const} \tag{4}
\end{equation*}
$$

Introduce (4) in (3)

$$
\begin{equation*}
-k_{x}^{2}-\frac{1}{v_{p}^{2}}\left(-\omega^{2}\right)=0 \quad \Rightarrow \quad k_{x}^{2}=\frac{\omega^{2}}{v_{p}^{2}} \quad \text { or } \quad k_{x}= \pm \frac{\omega}{v_{p}} \tag{5}
\end{equation*}
$$

For such a link between k_{x}, ω and v_{p} Eq. (3) is fulfilled, so (2) is a particular solution for (1). Eqs. (4) are simply equations for free oscillations, with solutions sin, cos or imaginary exponentials, at our convenience.

Choose

$$
\begin{equation*}
\psi(x, t)=X(x) T(t)=\left[A \sin k_{x} x+B \cos k_{x} x\right] \exp [i \omega t] \tag{6}
\end{equation*}
$$

Use limit conditions

$$
\begin{gather*}
\psi(0, t)=0 \quad B \cos 0 \exp [i \omega t]=B e^{i \omega t}=0 \quad \Rightarrow B=0 \\
\psi(a, t)=0 \quad A \sin k_{x} a \cdot e^{i \omega t}=0 \quad \Rightarrow \quad k_{x} a=n \pi, \quad n=1,2,3, \ldots \\
k_{n}=\frac{n \pi}{a}, \quad \omega_{n}=v_{p} k_{n}=n \frac{\pi}{a} v_{p} \tag{7}
\end{gather*}
$$

We get an infinity of solutions depending of the index n :

$$
\begin{equation*}
\psi_{n}(x, t)=X_{n}(x) T_{n}(t)=A_{n} \sin \left(\frac{n \pi}{a} x\right) \exp \left[i n \frac{\pi v_{p}}{a} t\right] \tag{8}
\end{equation*}
$$

A general solution will be

$$
\begin{equation*}
\psi(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{a} x\right) \exp \left[i n \frac{\pi v_{p}}{a} t\right] \tag{9}
\end{equation*}
$$

Remember

$$
\begin{equation*}
\omega_{n}=n \frac{\pi}{a} v_{p}=\frac{2 \pi}{T_{n}} \quad T_{n}=\frac{2 \pi}{\omega_{n}}=\frac{2 a}{n v_{p}} \tag{10}
\end{equation*}
$$

characteristic pulsations and periods.

$$
\begin{equation*}
k_{n}=\frac{2 \pi}{\lambda_{n}}=\frac{n \pi}{a} \quad \lambda_{n}=\frac{2 \pi}{k_{n}}=\frac{2 a}{n} \tag{11}
\end{equation*}
$$

The fundamental: $n=1$, with wavelength twice the length of the string, $\lambda_{1}=2 a$ and the period $T_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 a}{v_{p}}=\frac{\lambda_{1}}{v_{p}}$.

Exercices:

1. Give v_{p} and a, find wavelengths, periods, frequencies and k 's for $n=1,2,3, \ldots$
$v_{p 1}=340 \mathrm{~m} / \mathrm{s}$ (sound in air), $v_{p 2}=3000 \mathrm{~m} / \mathrm{s}$ (sound in metal); $a_{1}=0.5 \mathrm{~cm}, a 2=10 \mathrm{~cm}$, $a_{3}=2 \mathrm{~m}$,
Any other numeric application containing the above quantities.

2D waves in a membrane, 3D waves in a parallelipipedic bar

Generalization of Eq. (1) and of particular solution (2)

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{1}{v_{p}^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0 \tag{1'}
\end{equation*}
$$

$$
\psi(x, t)=X(x) T(t) \quad \rightarrow \quad \psi(x, y, z, t)=X(x) Y(y) Z(z) T(t)
$$

Limit conditions for a bar $a \times b \times d$:

$$
\begin{aligned}
& \psi(0, y, z, t)=0, \psi(a, y, z, t)=0 \\
& \psi(x, 0, z, t)=0, \psi(x, b, z, t)=0 \\
& \psi(x, y, 0, t)=0, \psi(x, y, d, t)=0
\end{aligned}
$$

(3) becomes

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}-\frac{1}{v_{p}^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=0 \rightarrow \quad \frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}-\frac{1}{v_{p}^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=0 \tag{3'}
\end{equation*}
$$

(4) becomes

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}=-k_{x}^{2} \quad \frac{Y^{\prime \prime}(y)}{Y(y)}=-k_{y}^{2} \quad \frac{Z^{\prime \prime}(z)}{Z(z)}=-k_{z}^{2} \quad \frac{T^{\prime \prime}(t)}{T(t)}=-\omega^{2} \tag{4’}
\end{equation*}
$$

with the condition (5) becoming

$$
k_{x}^{2}=\frac{\omega^{2}}{v_{p}^{2}} \quad \rightarrow \quad k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{\omega^{2}}{v_{p}^{2}}
$$

Solution as generalization of (6)

$$
\begin{aligned}
& \psi(x, t)=X(x) T(t)=\left[A \sin k_{x} x+B \cos k_{x} x\right] \exp [i \omega t] \quad \rightarrow \\
& \psi(x, y, z, t)=\left[A \sin k_{x} x+B \cos k_{x} x\right]\left[C \sin k_{y} y+D \cos k_{y} y\left[E \sin k_{z} z+F \cos k_{z} z\right] \exp [i \omega t]\right.
\end{aligned}
$$

Initial conditions in $x=0, y=0, z=0$ cancel cosine terms, we get

$$
\psi(x, y, z, t)=A \sin k_{x} x \cdot C \sin k_{y} \cdot E \sin k_{z} z \cdot \exp [i \omega t]
$$

Initial conditions in $x=a, y=b, z=d$ generalize (7):

$$
\begin{gather*}
k_{n}=\frac{n \pi}{a}, \quad \omega_{n}=v_{p} k_{n}=n \frac{\pi}{a} v_{p} \quad \rightarrow \\
k_{x}=\frac{n \pi}{a} \quad k_{y}=\frac{p \pi}{b} \quad k_{z}=\frac{q \pi}{d} \\
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k_{n p q}^{2}=\pi^{2}\left(\frac{n^{2}}{a^{2}}+\frac{p^{2}}{b^{2}}+\frac{q^{2}}{d^{2}}\right)=\frac{\omega_{n p q}^{2}}{v_{p}^{2}} \tag{7’}
\end{gather*}
$$

Exercises and numerical applications as above. Examples welcome.

