Forced damped oscillations

Equation:
mX + 7% + kx = F(t) (019)
or
2+ 25+ afx =T (019
T m

Preliminary solution: Euler type because constant coefficients, but bad idea
because it is an inhomogeneous equation (nonzero RHS).
Particular case: harmonic (one frequency, i.e. sinusoidal) driving external
force.
F(t)= FyexpliQt] (020)
Solution: try
x(t) = aexp[iQt] (021)

This is the so-called stationnary solution. We shall study this one.
Stationnary solution

(020) and (021) in (019%):
a(Q)= % ﬁ =[a(Q) exp[iO(Q)]] (022)
wf —Q° +i—

Choose: Fy=1, m=1 a@y=100all inSI, vary Qandz and represent
Abs[a(Q)]=[a(@) and Arg[a(Q)].
General remarks:

- the maximum of the modulus is very close to Q= for small damping
but may differ considerably for important losses resonance (see
Wikipedia, the “maximum curve” from the article “Resonance”)

- examine thoroughly the parameters and the curve behavior varying the

frequency of the external force.



Qualitative study.

Modulus and argument in Eq. (022) are:

la(Q)|= Fo ! tan 9(Q) = _iQ_/rz (023)
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Where Q is the quality factor of the oscillator
Q=" (027)
Oay)=rm12 (026"

The quality factor

The quality or the Q-factor is a very important quantity which controls many of

the properties of an oscillating system. The maximum of the amplitude is Q times the

amplitude at very low frequencies, see Eq. (026'). The peak width is Q times

narrower than the frequency for maximum amplitude. To see this let’s draw a

particular curve as below. We sketched the two points where the amplitude drops to

half its maximum value. The difference between the two pulsations is known as the

full width at half-maximum (FWHM) AQ. It must be shown that a very good

approximation gives the ratio of the central frequency to the FWHM as
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The maximum is not exactly in Q = a, . A little calculus shows that the maximum
appears for
1

Qmax =g [1- 2Q_2 (029)

Exercise: compute the value of the maximum amplitude and write it in the form

[a(Qmax | =[a(en ) 1(Q) = [a(en 1+ f2(Q))

For details see http://www.math.dartmouth.edu/~ahb/scia49/q.pdf for a quick view
of the Q factor. See also http://tf.nist.qov/general/enc-g.htm (National Institute of
Standards and Technology). ...The quality factor or Q factor is...

an inherent characteristic of an oscillator that influences its stability. The
quality factor, Q, of an oscillator is defined as its resonance frequency divided
by its resonance width. Obviously a high resonance frequency and a narrow
resonance width are both advantages when seeking a high Q. Generally
speaking, the higher the Q, the more stable the oscillator, since a high Q
means that an oscillator will stay close to its natural resonance frequency. The
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table shows some approximate Q values for several different types of

oscillators.

Oscillator Type
Tuning Fork
Quartz Wristwatch
OCXO
Rubidium atom
Cesium Beam
Hydrogen Maser
Cesium Fountain
Mercury lon Optical Standard
Mechanical oscillators
RLC oscillators

ClearAll[a,amod,aarg,om,tau,om0,f0,m,q,theta]
om0=100;f0=1;m=1;

amod[om_,tau_]=f0/(m*Sqrt[(om0”2-om"2)"2+4*om”2/tau”2])
aarg[om_,tau_]=ArcTan[-(2*om/tau)/(om0”"2-om”2)]
Plot[{amod[om,0.1],amod[om,0.3],amod[om,0.6]},{om,0,200},

PlotRange—All,PlotStyle—>{Red,Blue,Green}]

Plot[{aarg[om,0.1],aarg[om,0.3],aarg[om,0.6]},{om,0,200}, Ticks—
{Automatic,{0,Pi/2,-Pi/2,Pi/4,-Pi/4}} PlotRange—All,PlotStyle—>{Red,Blue,Green}]
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amod[om0,0.1]
FindMaximum[Abs[a[om,0.1]],{om,om0}]
0.0005

{0.000502519,{om—98.9949}}

amod[omO0,0.3]
FindMaximum[Abs[a[om,0.3]],{om,om0}]
0.0015
{0.00150083,{om—99.8888}}
amod[om0,0.6]
FindMaximum[Abs[a[om,0.6]],{om,om0}]
0.003
{0.00300042,{om—99.9722}}
This stationnary solution is correct only after a certain amount of time, when the

oscillator ,,forgets” initial conditions and its natural frequency @,. The complete

solution contains also an initial behavior, called transient solution.
Transient solution

Mathematics shows that the general solution of an inhomogeneous equation as
2+ 25+ afx =Y (019"
T m
contains the general solution af the homogeneous equation as e.g. (O15) added
with a particular solution of the complete equation, as e.g. (022). The following
programs show several possibilities; in all situations the permanent (stationnary)

solution appears after a certain time. The two regimes are clerly separated.



ClearAll[A,x,t,tau,oml,om2,phi,y]

tau=10;oml=2;0m2=0.5;phi=0;A=1;
sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t][A*Sin[om2*t+phi] ,x[0]01,x"'[0]
01} ,x[t],t]

Plot[Re[x[t]/.s0l],{t,0,2000},PlotRange—>{{0,200},{-
2,2}},PlotPoints—500]
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ClearAll[A,x,t,tau,oml,om2,phi,y]

tau=10;o0oml=2;0m2=0.5;phi=Pi/2;A=1;
sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t]A*Sin[om2*t+phi] ,x[0]00,x"'[0]
0-1},x[t],t];

Plot[Re[x[t]/.s0l],{t,0,2000},PlotRange—>{{0,200}, {-
2,2}},PlotPoints—500]
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ClearAll[A,x,t,tau,oml,om2,phi,y]
tau=10;o0oml=2;o0m2=2;phi=Pi/2;A=1;



sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t]A*Sin[om2*t+phi] ,x[0]00,x"'[0]
D_l} /x[t] /t] ’
Plot[Re[x[t]/.sol],{t,0,2000},PlotRange—>{{0,100},All},PlotPoints—>500
1

ClearAll[A,x,t,tau,oml,om2,phi,y]

tau=10;oml=2;o0m2=2.1;phi=Pi/2;A=1;
sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t][0A*Sin[om2*t+phi] ,x[0]00,x'[0]
0-1},x[t],t]l;
Plot[Re[x[t]/.sol],{t,0,2000},PlotRange—>{{0,100},Al1l},PlotPoints—>10
00]

ClearAll[A,x,t,tau,oml,om2,phi,y]
tau=0.1;oml=2;0m2=10.8;phi=Pi/2;A=1;



sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t]A*Sin[om2*t+phi] ,x[0]00,x'[0]0-
1},x[t], t];
Plot[Re[x[t]/.sol],{t,0,2000},PlotRange—{{0,20},Al1ll} ,PlotPoints—1000]
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]

ClearAll[A,x,t,tau,oml,om2,phi,y]

tau=1l;oml=2;0om2=10;phi=0;A=1;
sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t]A*Sin[om2*t+phi] ,x[0]00,x"'[0]
0-1},x[t],t];
Plot[Re[x[t]/.s0l],{t,0,200},PlotRange—>{{0,20},All},PlotPoints—>1000
]
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ClearAll[A,x,t,tau,oml,om2,phi,y]
tau=10;oml=2;0m2=0.1;phi=0;A=1;



sol=DSolve[{x''[t]+x'[t]/tautoml*2*x[t]A*Sin[om2*t+phi] ,x[0]00,x'[0]0-
1},x[t], t];
Plot[Re[x[t]/.sol],{t,0,2000},PlotRange—{{0,200},Al1l},PlotPoints—>500]
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ClearAll[a,om,tau,om0,£0]

om0=100;£f0=1;m=1;tau=0.5;

afom_,tau_]=£0/(m* (om0*~2-om"2+I*2*om/tau))
Plot[Re[a[om,1]],{om,0,200},PlotRange—>All,PlotLabel->"Dispersion
curve"]
Plot[Im[a[om,1]],{om,0,200},PlotRange—>All,PlotLabel->"Absorption

curve"]
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Phase space figures. Forced damped oscillator. Resonance, om1=o0m2=20, phase shift
of Pi/2, tau=0.2 (all in SI).

ClearAll[A,x,t,tau,oml,om2,phi,y,sol,xsolfor]
tau=0.2;0oml1=20;0m2=20.0;phi=Pi/2;A=1;
sol=DSolve[{x''[t]+x'[t]/tautoml"2*x[t][A*Sin[om2*t+phi],

x[0]00, x"[0]L)-1},x[t], t]

In red : te(0, 0.75), the damping exceeds the influence of the external force, the

point goes from the initial phase x(0)= 0, %(0) = —1to the origin x(0)=0, %(0)=0.

t €(0.75, 2), the external force re-drives the point which moves according

to a superposition of the driving force and the free damped oscillation.
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In blue t (2, 50) the point moves in the stationary part,
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The same parameters, but no phase shift. The oscillator no more arrives in the origin.
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No more resonance : om1=20, om2=22. The final amplitude is smaller than before.
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