1. The abscissa of a particle is given by $x(t)=b t(1-c t)$, where $b=3, c=0,25$ (in SI). Find:
a) Measurement units for b and c.
b) The velocity and the acceleration of the particle.
c) The time until the particle returns to the origin.
2. A body moves according to the equation $x(t)=a \mathrm{e}^{-\beta t} \sin \omega t$, where $\beta, \omega>0$ are constant.). Find:
a) Measurement units for β and ω.
b) The velocity and the acceleration of the particle for $t=0$.
c) The moments when the body attains extreme positions.
3. A body moves in the positive $O X$ axis, its velocity varying according to the law $v(t)=b(1-t / c)$, where $b=10, c=5$ (in SI). Find:
a) Measurement units for b and c.
b) The coordinate $x(t)$. Its values at $t=5 \mathrm{~s}$ and $t=10 \mathrm{~s}$.
c) Moments at which $x(t)=9 \mathrm{~m}$.
4. The position of a body is given by $x(t)=a \mathrm{e}^{-t / \tau} \cos (\omega t+\alpha)$. Compute the constants a and α in two situations:
a) Initial conditions are $x(0)=0, v(0)=v_{0}$
b) Initial conditions are $x(0)=x_{0}, v(0)=0$
5. A particle moves along the $O x$ axis according to the law: $x(t)=A \cos \frac{2 \pi}{T} t$. Find:
a) The velocity and the acceleration of the body.
b) The distance traveled by the body during the time interval from $t=0$ to $t=T / 8$.
c) The distance traveled in the time interval T.
6. The components of a particle's velocity are: $v_{x}=A \sin \omega t, v_{y}=A \sin \left(\omega t+\frac{\pi}{2}\right), v_{z}=0$. Find the modulus of the velocity, the acceleration and its modulus, as well as the angle between \vec{v} and \vec{a}. Discuss.
7. The time dependence of the coordinate of a particle is given by: $x=A \sin \omega t, \quad y=A \sin \left(\omega t+\frac{\pi}{2}\right), \quad z=0$. Compute the position vector \vec{r}, the velocity \vec{v} and the acceleration \vec{a}. Compute the angles between \vec{r} and \vec{v} and between \vec{r} and \vec{a}. Discuss.
8. A particle is thrown from the origin of the frame $x O y$ at the moment $t=0$, with velocity v_{0} at a certain angle θ from the $O x$ axis. At the same moment another particle begins to fall freely from a wall with height h, situated at the distance d. Air resistance is neglected. Find the angle θ in order that the two bodies meet. What condition must satisfy the initial velocity v_{0} ?
9. The potential energy of a particle is given by $U=\frac{k x^{2}}{2}$. Find the force acting on the particle and the work W done on it when the body moves from the point $A(1,1,2)$ to the point $B(2,1,2)$.
10. A pendulum of length $l=1 \mathrm{~m}$ and mass $m=2 \mathrm{~kg}$ moves in a vertical plane, the maximum deviation angle being $\alpha=30^{\circ}$. Find:
a) The kinetic and potential energies of the body during the movement.
b) The angular momentum of the body measured with respect to the hook.
