Kinematics

K.1. Definitions and comments

Model: points moving with respect to a frame of reference.
Their positions are described by vectors in 3D with the origins in a point called the origin of the frame. Vectors are right and proper because physics laws expressed in this way have the same form in all frames.

In physics, a point is a mathematical point having a mass. The mass is the measure of inertia (see the experiment 1 experienta cu hartia higienica trasa repede si incet). It does not measure the amount of matter; for this we use the number of moles. The mass varies with speed in Special Relativity.

Remark: bodies are formed by many such "physical" points. If the distances between points do not vary the body is rigid. If not we speak about elastic bodies or fluids.

M_{1} and M_{2} are two material points. Their positions are given by $\vec{r}_{1}(t)$ and $\vec{r}_{2}(t)$, which may vary in time; $\vec{u}_{x}, \vec{u}_{y}, \vec{u}_{z}$ are unit vectors. If \vec{r}_{1} is a constant vector, point M_{1} is at rest. If $\vec{r}_{2}(t)$ varies in time point M_{2} moves. Its (instantaneous) velocity is defined by:

$$
\begin{equation*}
\vec{v}_{2}(t)=\frac{\mathrm{d} \vec{r}_{2}}{\mathrm{~d} t} \tag{K1}
\end{equation*}
$$

Its speed is the modulus of the velocity. The average speed (for 1D movement) is the change in the distance divided by the total duration (change in time):

$$
\begin{equation*}
v_{a v}=\frac{\Delta d}{\Delta t} \tag{K2}
\end{equation*}
$$

The variation of the velocity is called (instantaneous) acceleration:

$$
\begin{equation*}
\vec{a}_{2}(t)=\frac{\mathrm{d} \vec{v}_{2}}{\mathrm{~d} t} \tag{K3}
\end{equation*}
$$

Exercise. Analyze the following affirmations:

- Acceleration and velocity are always parallel
- Acceleration and velocity 1D have always the same direction
- When velocity has a maximum, so does the acceleration
- When acceleration has a maximum, so does the velocity
- When speed is constant acceleration is zero.

K.2. Cartesian coordinates

We use fixed orthogonal axes. Position:

$$
\begin{equation*}
\vec{r}(t)=x(t) \vec{u}_{x}+y(t) \vec{u}_{y}+z(t) \vec{u}_{z} \tag{K4}
\end{equation*}
$$

Velocity:

$$
\begin{equation*}
\vec{v}(t)=\dot{\vec{r}}(t)=\dot{x}(t) \vec{u}_{x}+\dot{y}(t) \vec{u}_{y}+\dot{z}(t) \vec{u}_{z} \tag{K5}
\end{equation*}
$$

Acceleration:

$$
\begin{equation*}
\vec{a}(t)=\ddot{\vec{r}}(t)=\ddot{x}(t) \vec{u}_{x}+\ddot{y}(t) \vec{u}_{y}+\ddot{z}(t) \vec{u}_{z} \tag{K6}
\end{equation*}
$$

Remark: What if the axes move? When we should use such a coordinate system? We have to choose the frame the best suited for the problem, i.e. where the equations are the simplest. One needs a moving frame when one studies the movement of a body on the surface of another body which moves in its turn, as would be a material point moving inside a sphere in rotation. Two obvious frames appear to be interesting: the Earth assumed at rest or the sphere assumed at rest. Other examples are given by problems having certain symmetry: spherical, cylindrical, plane.

Example.

1.The position of a body is given by $\vec{r}(t)=6 t^{2} \vec{u}_{x}-15 \vec{u}_{y}$. Compute $\vec{v}(t)$ and $\vec{a}(t)$. What movement the body has?

Answer: $\vec{v}(t)=12 t \vec{u}_{x}-15 \vec{u}_{y} ; \vec{a}=12 \vec{u}_{x} ;$

K.3. Polar coordinates

If a body rotates in a plane a polar frame is appropriate.

$$
\begin{array}{lrl}
\vec{r}=r \vec{u}_{r}=x \vec{u}_{x}+y \vec{u}_{y} & x=r \cos \theta, \quad y=r \sin \theta \\
\vec{u}_{r}=\cos \theta \vec{u}_{x}+\sin \theta \vec{u}_{y} & \vec{u}_{\theta}=-\sin \theta \vec{u}_{x}+\cos \theta \vec{u}_{y} \tag{K8}
\end{array}
$$

Or in matrix form:

$$
\binom{\vec{u}_{r}}{\vec{u}_{\theta}}=\left(\begin{array}{ll}
\cos \theta & \sin \theta \tag{K8’}\\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\vec{u}_{x}}{\vec{u}_{y}}
$$

Exercise: express \vec{u}_{x} and \vec{u}_{y} in terms of \vec{u}_{r} and \vec{u}_{θ}.
If angle θ varies in time, $\theta=\theta(t)$, so do unit vectors \vec{u}_{r} and \vec{u}_{θ}.
The velocity and acceleration in polar coordinates are:

$$
\begin{gather*}
\vec{v}=\dot{\vec{r}}=\dot{r} \vec{u}_{r}+r \dot{\vec{u}}_{r}=\dot{r} \vec{u}_{r}+r \dot{\theta} \vec{u}_{\theta}=v_{r} \vec{u}_{r}+v_{\theta} \vec{u}_{\theta} \tag{K9}\\
\vec{a}=\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{u}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{u}_{\theta}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{u}_{r}+\frac{1}{r}\left[\frac{\mathrm{~d}}{\mathrm{~d} t}\left(r^{2} \dot{\theta}\right)\right] \vec{u}_{\theta} \tag{K10}
\end{gather*}
$$

Particular situation: uniform circular motion, $r=$ const., $\dot{\theta}=\omega=$ const.:

$$
\vec{v}=r \omega \vec{u}_{\theta} \quad \vec{a}=-r \omega^{2} \vec{u}_{r}
$$

Va rog sa insistati mai mult asupra miscarii circulare uniforme, ei nu stiu

