
Bohr model 

 

 

1.1 Spectral series. The naïve Bohr’s theory 

Atomic spectra from gases show remarkable regularities. Spectral lines arrange themselves in 

series. A spectral series is a family of lines emitted by an atom whose frequencies may be deduced from 

a simple law, by the change of just one parameter. The first spectral series was observed by Balmer in 

1885, in the visible spectrum of atomic hydrogen. The inverse of the wavelength – (the wavenumber ~  – 

is given by: 
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Here -17 m10097.1 HR  is the Rydberg constant (or rad/s102.07 16R ). Other series of atomic 

hydrogen are obtained from  
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Similar relations, although more complex, exist for all elements. The combination principle (Rydberg-Ritz, 

1908) follows: the wavenumber mn~  of a spectral line is always given by the difference of two terms, 

known as spectral terms: 

 

     )()(~ nTmTmn     (Q1.18’) 

 

Classical explanations fail to explain such a simple relation.  

In 1913 Niels Bohr put forward a new theory based on two postulates and a quantified condition. 

1st postulate. Each atom (in general each microsystem) is characterized by a family of stationary states 

with discrete energies E1, E2, E3,… En. When in these states the system does not emit or absorb energy. 



2nd postulate. The energy of a microsystem may vary only by discrete values by transitions from a 

stationary state of energy Em to a stationary state of energy En. The transition is associated to an emission 

or an absorption of a photon with frequency given by 

    nmmn EE      (Q1.19) 

If 0mn  the photon is emitted if 0mn  the photon is absorbed.  

The Bohr condition (Q1.19) represents the energy conservation for each process of exchange of energy 

with emission or absorption of photons. It explains the combination principle (Q1.18’). 

The quantum condition specifies that the angular momentum of an electron in an atom is quantified: 

   nvrmln  0   n=1, 2, 3,…  (Q1.20) 

 

This condition could be understood using a model where the electron moves on a circular orbit around 

the nucleus as in Fig. 3.  

 

 

  Fig. 3. The orbit of an electron and the de Broglie associated wave. 

 

The electron has an associated wave and as its movement ought to be stable the orbit must contain an 

integer number of wavelengths: 
p

h
nnr  2 . Hence nlpr  . 



Assume a hydrogen atom with the nucleus made of one proton. This proton is more than 1800 

times heavier than the electron and we shall consider it at rest. Write the equality of Coulomb and 

centrifugal forces: 
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. Using (Q1.20) one finds: 
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r  is the first Bohr radius. Velocities and radii are quantified. 

The energy of the electron on the n-th orbit is quantified too and given by: 
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Exercise: Compute the Rydberg constant as: 
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The existence of stationary states was demonstrated by the Franck-Hertz experiment 

(http://en.wikipedia.org/wiki/Franck%E2%80%93Hertz_experiment ).  

 

http://en.wikipedia.org/wiki/Franck%E2%80%93Hertz_experiment

