Mathematical appendix 2

Partial derivatives

(Ken Riley, Matthew Hobson, Mathematical methods for physics and engineering, Cambridge 2002)

Partial differentiation

Let $f_{1}(x)=\cos ^{2} x$. Consider functions that depend on more than one variable, e.g. function $g(x, y)=x^{2}+3 x y$, or $f(x, y)=\cos ^{2} x+\cos ^{2} y$, or $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}$.

Plots of $f_{1}(x)$ and $g(x, y)$:
ClearAll[x,y,f1,g]
$\mathrm{f} 1\left[\mathrm{x}_{-}\right]=(\operatorname{Cos}[\mathrm{x}])^{\wedge} 2$
$\mathrm{f}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]=(\operatorname{Cos}[\mathrm{x}])^{\wedge} 2+(\operatorname{Cos}[\mathrm{y}])^{\wedge} 2$
Plot[f1[x],\{x,-5,5\}]
Plot3D[f[x,y],\{x,0-5,5\},\{y,-5,5\}]
$\operatorname{Cos}[\mathrm{x}]^{2}$
$\operatorname{Cos}[\mathrm{x}]^{2}+\operatorname{Cos}[\mathrm{y}]^{2}$

It is clear that a function of two variables will have a gradient in all directions in the $x y$-plane. The rate of change of $f(x, y)$ in the positive x - andy-directions are the partial derivatives with respect to x and y respectively. Definitions (if limits exist):

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\lim \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \text { for } \Delta x \rightarrow 0 \\
& \frac{\partial f}{\partial y}=\lim \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y} \text { for } \Delta y \rightarrow 0
\end{aligned}
$$

and in general:
$\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i}}=\lim \frac{f\left(x_{1}, x_{2}, \ldots, x_{i}+\Delta x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)}{\Delta x_{i}}$ for $\Delta x_{i} \rightarrow 0$

Higher derivatives:

$$
\begin{array}{ll}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \\
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
\end{array}
$$

An important theorem states that the second partial derivatives are equal, $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$, provided they are continuous. Examples.

Total differential and total derivative

We compute the rate of change of $f(x, y)$ in an arbitrary direction. We make simultaneous small changes in x and Δy in y. As a result, f changes to $f+\Delta f$ and we may write:

$$
\begin{aligned}
& \Delta f=f(x+\Delta x, y+\Delta y)-f(x, y)= \\
& f(x+\Delta x, y+\Delta y)-f(x, y+\Delta y)+f(x, y+\Delta y)-f(x, y)= \\
& \frac{f(x+\Delta x, y+\Delta y)-f(x, y+\Delta y)}{\Delta x} \Delta x+\frac{f(x, y+\Delta y)-f(x, y)}{\Delta y} \Delta y
\end{aligned}
$$

For not too large Δx and Δy we may write:

$$
\Delta f \approx \frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y
$$

When Δx and Δy become infinitesimal define the total differential $d f$ of the function $f(x, y)$:

$$
\mathrm{d} f \approx \frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y
$$

Exact and inexact differentials

We know how to compute total differentials when we know the functions. Sometimes we want to revrse the process and find the function f that differentiates to give a known differential. Examples: $x d y+y d x$ is the differential of $f(x, y)=x y+c ; x d x+y d y$ is the differential of ...

On the other hand, the differential $x d y+3 y d x$ is inexact. Indeed, assume $\mathrm{d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y=x d y+3 y d x$, hence $\frac{\partial f}{\partial x}=3 y, \quad \frac{\partial f}{\partial y}=x$. The mixed second order derivatives are not equal therefore there is no such a function with $x d y+3 y d x$ as an exact differential. But we may find an integrating factor which, transforms the given inexact differential in an exact one. In our case this is x^{2} :

$$
x^{2} \times(x d y+3 y d x)=3 x^{2} y d x+x^{3} d y=d\left(x^{3} y\right)
$$

