## Mathematical appendix 1-2012

## 1. Taylor series

We are interested in approximations arround a point $x_{0}$ of a function $f(x)$ by a polynomial of degree $n \geq 0$, eventually by a series.
$n=0$ what is the approximation? obviously $f\left(x_{0}\right)$
$n=1$ what is the approximation ? A curve should be locally substituted by a straight line - the tangent -

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) . \text { (figure) }
$$

$n=2$ what is the approximation ? A curve should be locally substituted by a parabola (figure)

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

$n=3$ what is the approximation ? A curve should be locally substituted by a 3 -rd degree polynomial (figure) -

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{3}
$$

$n=\infty$

$$
f(x) \approx \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n} \quad \text { Taylor series }
$$

The expansion is true also for complex variable $x$, if derivatives exist.

## Examples. (http://en.wikipedia.org/wiki/Taylor_series)

$\operatorname{Sin} x$ in $x=0$


As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows $\sin x$ and Taylor approximations, polynomials of degree 1, 3, 5, 7,9, 11 and 13.

Exponential function:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad \text { for all } x
$$

Natural logarithm:

$$
\begin{aligned}
& \log (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n} \quad \text { for }-1 \leq x<1 \\
& \log (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} \quad \text { for }-1<x \leq 1
\end{aligned}
$$

Finite geometric series:
$\frac{1-x^{m+1}}{1-x}=\sum_{n=0}^{m} x^{n} \quad$ for $x \neq 1$ and $m \in \mathbb{N}_{0}$

Infinite geometric series:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }|x|<1
$$

Variants of the infinite geometric series:

$$
\frac{x}{x-1}=\sum_{n=0}^{\infty} x^{-n} \quad \text { for }|x|>1
$$

$$
\frac{x^{m}}{1-x}=\sum_{n=m_{\infty}}^{\infty} x^{n} \quad \text { for }|x|<1 \text { and } m \in \mathbb{N}_{0}
$$

$$
\frac{x}{(1-x)^{2}}=\sum_{n=1}^{n=m_{\infty}} n x^{n} \quad \text { for }|x|<1
$$

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{n=1} n x^{n-1} \quad \text { for }|x|<1
$$

Square root:

$$
\sqrt{1+x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{(1-2 n)(n!)^{2}\left(4^{n}\right)} x^{n}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\ldots \quad \text { for }|x| \leq 1
$$

## Trigonometric functions

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \quad \text { for all } x \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \quad \text { for all } x \\
& \tan x=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n)!} x^{2 n-1}=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots \quad \text { for }|x|<\frac{\pi}{2}
\end{aligned}
$$

See also e.g. http://www.efunda.com/math/taylor_series/taylor_series.cfm

## 2. Important application: exponential with imaginary exponent

$z$ is real

$$
e^{i z}=1+\frac{i z}{1!}+\frac{(i z)^{2}}{2!}+\frac{(i z)^{3}}{3!}+\ldots+\frac{(i z)^{n}}{n!}+\ldots=
$$

$$
\begin{align*}
& 1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\ldots+  \tag{*}\\
& i\left(\frac{z}{1!}-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\ldots\right) \tag{**}
\end{align*}
$$

The line $\left(^{*}\right)$ derived gives minus the bracket from line $\left(^{* *}\right.$ ) Hence (*) is cos function The bracket from line $\left({ }^{* *}\right)$ derived gives line $\left(^{*}\right)$ As may be seen from the expansions page 3 above. An important relation (Euler):

$$
e^{i z}=\cos z+i \sin z
$$

## Applications: Euler relations

$$
\begin{aligned}
& e^{i a} \cdot e^{i b}=e^{i(a+b)}=\cos (a+b)+i \sin (a+b)=(\cos a+i \sin a)(\cos b+i \sin b) \\
& =\cos a \cos b-\sin a \sin b+i(\sin a \cos b+\sin b \cos a) \\
& e^{i a} \cdot e^{-i b}=e^{i(a-b)}=\cos (a-b)+i \sin (a-b)=(\cos a+i \sin a)(\cos b-i \sin b) \\
& =\cos a \cos b+\sin a \sin b+i(\sin a \cos b-\sin b \cos a) \\
& \cos a=\frac{e^{i a}+e^{-i a}}{2} \\
& \sin a=\frac{e^{i a}-e^{-i a}}{2 i}
\end{aligned}
$$

## 3. Partial derivatives

Simple examples.
4. Vector algebra

Simple examples
5.

