Problems Irodov

6.18. In accordance with classical electrodynamics an electron moving with acceleration w loses its energy due to radiation as $d E / d t=-2\left(e_{0}\right)^{2} w^{2} /\left(3 c^{3}\right)$,
where e is the electron charge, c is the velocity of light. Estimate the time during which the energy of an electron performing almost harmonic oscillations with frequency $\omega=$ $5^{*} 10^{15} \mathrm{~s}^{-1}$ will decrease $\eta=10$ times.

Notation: $\quad \gamma=\frac{2 e_{0}^{2}}{3 c^{2}}$. If the velocity of the e is $v=v_{0} \sin \omega t$ the average of the acceleration squared is $\left\langle a^{2}\right\rangle=\frac{2 \pi}{\omega} \int_{0}^{2 \pi / \omega}\left[\frac{d}{d t}\left(v_{0} \sin \omega t\right)\right]^{2} d t=v_{0}^{2} \omega^{2} / 2$. The electron energy diminishes in time as
$\frac{d E}{d t}=-\gamma\left\langle a^{2}\right\rangle=-\gamma \frac{v_{0}^{2} \omega^{2}}{2} \times \frac{m}{m}=-\gamma E \frac{\omega^{2}}{m}$
$E=E_{0} \exp \left[-\gamma \frac{\omega^{2}}{m} t\right]=E_{0} / 10$. Numerical result: $t=1.47 \cdot 10^{-8} \mathrm{~s}$.
6.25. Calculate the magnetic field induction at the centre of a hydrogen atom caused by an electron moving along the first Bohr orbit.

The Bohr quantification condition $m v_{n} r_{n}=m \omega_{n} r_{n}^{2}=n \hbar$. The normal acceleration is $a_{n}=\omega_{n}^{2} r_{n}=\frac{e_{0}^{2}}{r_{n}^{2} m}$. The e moving in a circle is equivalent to an electric current $I_{n}=e \frac{\omega_{n}}{2 \pi}$.
Using Biot-Savart law $B=\mu_{0} \frac{I}{2 r_{n}}=12.5 \mathrm{~T}$
6.31. How many spectral lines are emitted by atomic hydrogen excited to the n-th energy level?
$n(n-1) / 2$

