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1. Equation of electromagnetic waves in vacuum 

 

In vacuum there are no electric charges 0  and no electric currents 0j


. 

Maxwell equations in differential form (MxI’-MxIV’) become: 
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Apply   to the 3rd equation (EM36) and use      cbacabcba 
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 . The product 00  is the 

inverse of the square of the light velocity in vacuum; eventually we find the3D 

wave equation: 
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The same equation holds for every field or induction. In certain particular 

conditions all the conclusions find for elastic waves apply to em waves as well. 

The d’Alembert and Fourier type solutions are correct for each component of 

electric or magnetic fields. Interference and diffraction are phenomena we come 

across in the em case as well as for elastic waves. 

In the matter the above equation writes: 
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cn the velocity of light in the substance, n is the refractive index 

 

    rrrn       (EM39) 

The last approximation holds in non-magnetic materials, where 1r . It turns 

out that in the vast majority of situations n>1, so that cn<1. 

 

2. Characteristics of electromagnetic waves 

 

1. Types of solutions 

Harmonic plane waves. All the solutions given by d’Alembert are correct for each 

component of the electric or magnetic fields. Any wave may be developed in 

Fourier series or integral. Therefore we study harmonic plane waves (hpw), find 

some general features and using superposition we expand them to more general 

waves. A scalar hpw is given by: 
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or an equivalent trigonometric function. Functions may contain a phase shift or an 

initial phase. Quantities a, k


, are constant. The direction of the wave vector k


 

gives the direction of propagation. The relation between the frequency and k


 is: 
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Spherical waves. A point-like source would emit a spherical wave. Such a wave 

fades as it travels away from the source. It has the expression: 
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For vector-type waves relations of the type (EM40-41) are correct for each 

component and we write e.g. 
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Remark: in some handbooks the sign of the phase could be opposite. The present 

convention is the same as in quantum mechanics. 

2. Transversality  

Assume we are in vacuum (or in a material with no charges and currents, e.g. a 

good insulator). The local Maxwell equations are: 
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It’s easy to show that for a hpw the operators 
t
  and   are replaced by 

multiplications: 
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The first two eqs from (EM43) become: 
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Electromagnetic waves are transverse. 

3. Relations between E


 and B


 

With (EM44) in the last two relations from (EM43): 
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For fields we write 
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The expression  

     376
0

0




     (EM48) 

is the intrinsic impedance of the vacuum. 

4. The Helmholtz equation. It is the equation fulfilled by a harmonic solution of 

the form (EM42):     tirEtrE exp, 0


 . Bring it in the wave equation to find  
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This is the Helmholtz eq (without the variable time). 

 

 

3. Reflection and refraction 

1. Continuity conditions at discontinuity surfaces. For surfaces without charges 

or currents: the normal components of inductions and the tangential components 

of fields are continuous, see the next figure: 

 

 

tan2tan1tan2tan12121 ;;; HHEEDDBB nnnn


  (EM50) 

2. Laws of reflection and refraction: they describe the phenomena which occur at 

the surface of separation between two materials (remarks about diffraction). One 

assumes the surface is (locally) plane and the incident wave is hp. The geometry is 

shown below. The three waves, incident, reflected and transmitted, have the form: 
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Then the above continuity equations give on the surface z=0: 

 

         0,expexpexp 000  zrktiErktiErktiE ttrrii


  

 

These equalities are true for each x, y and t, hence: 

     ir    ti nn  sinsin 21    (EM51) 

Let’s write all the “laws” of reflection and refraction: 

1. The reflection and the refraction occur in the incident plane defined by the 

incidence direction and the normal to the surface. 

2. The frequency remains unchanged. 

3. The reflection angle equals the incident angle. 

4. At refraction the Snellius-Descartes law is satisfied: ti nn  sinsin 21  . 

If 21 nn   then ti   , the 2nd material is optically more dense. In the opposite 

situation ti    and for each pair of materials we find an incident angle for which 

the refracted wave moves along the surface; this is the limit angle.  
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This is called total reflection. 

The condition is  
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and can be fulfilled only if 12 nn  . This phenomenon is the foundation of all the 

devices based on optical fibers and guides.  

3. The Fresnel relations. 

Geometry for the electric field normal to the incident plane: 
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incident plane, the magnetic field is normal to this plane. The figure can be 

deduced from the one above, keeping in mind that kHE
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// . 
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The continuity of the tangential components of the electric field writes as: 
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and that of the magnetic field is: 
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are known as the Fresnel coefficients for reflection and transmission in the 

perpendicular case. They are obtained immediately from the above relations: 
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The equalities are exact in non-magnetic materials, where
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For the parallel situation, iE
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// incident plane, the results are: 
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Exercise 1. Show that: 
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Energy transfer by reflection and transmission.  

The reflection factor is defined by: 
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As we have neglected absorption, T+R=1. 

From (EM54) we see that if    ti tan , i.e. if 2/  ti , there is no 

reflected wave with electric field parallel to the incidence plane. The 

corresponding incident angle is the Brewster angle B . The condition is  
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For this angle of incidence,   0// Br   and the reflected light is totally polarized 

with the electric field perpendicular to the incidence plane.  
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From Wikipedia, the article The Fresnel equations  

 
For application to optical fibers see 

http://en.wikipedia.org/wiki/Optical_fiber 

 


