Total reflection

Let's go back to the phenomenon of total reflection, as in the figure

The condition for total reflection is:

$$
\begin{equation*}
\sin \theta_{l}=\frac{n_{2}}{n_{1}} \tag{EM52}
\end{equation*}
$$

and can be fulfilled only if $n_{2}<n_{1}$. What happens if $\theta_{i}>\theta_{l}$? The refraction condition gives

$$
n_{2} \sin \theta_{t}=n_{1} \sin \theta_{i}>n_{1} \times \frac{n_{2}}{n_{1}}=n_{2}
$$

hence $\sin \theta_{t}>1$. The transmission angle becomes imaginary. We have to use in our computations only real angles, therefore we replace θ_{t} with some function of θ_{i}, which is definitely a real angle. Consider the figure used for Snell laws:

The electric field in the $2^{\text {nd }}$ material is

$$
\vec{E}_{t}=\vec{E}_{0 t} \exp \left[i\left(\omega t-\vec{k}_{t} \vec{r}\right)\right]
$$

Here $\vec{k}_{t} \cdot \vec{r}=k_{t} x \sin \theta_{t}+k_{t} z \cos \theta_{t}$ and $k_{t}=\frac{n_{2} \omega}{c}$. Replace θ_{t} by θ_{i} :

$$
\sin \theta_{t}=\frac{n_{1}}{n_{2}} \sin \theta_{i}, \quad \cos \theta_{t}= \pm \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}= \pm i \sqrt{\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}-1}
$$

where the square root is real. The electric field of the transmitted wave is

$$
\vec{E}_{t}=\vec{E}_{0 t} \exp \left[i\left(\omega t-\frac{n_{1} \omega}{c} x \sin \theta_{i}\right)\right] \exp \left[\mp \frac{n_{2} \omega}{c} z \sqrt{\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}-1}\right]
$$

Discussion during the lectures:

- the signs \pm
- attenuation and propagation

