
 1

Diffraction 

 

1. Introduction 

The deviation of a wave from rectilinear propagation, which occurs when a 

region of the wave front is obstructed, is called diffraction.  

Is there any other situation when the wave departs from rectilinear propagation? 

Yes, we've already studied reflection and refraction. There is also the bend of light 

beams in inhomogeneous materials (responsible of the mirages, see Wikipedia). When 

do we have diffraction? Not when the obstacle has dimensions of the order of the 

wavelength, because diffraction shows up even at the edge of a semi-infinite screen. 

The important point is that for diffraction to appear the curvature radii of the obstacles 

must have dimensions of the order of the wavelength (Sommerfeld).  

There is an approximate explanation of diffraction, based on the Huygens 

principle and on Fresnel's work and a rigorous theory initiated by Kirchhoff, much too 

difficult to treat.  

There is “little” difference between interference and diffraction: interference 

appears when the number of sources is finite, diffraction when it is infinite. 

 

2. Spherical waves (Mircea S. Rogalschi, Stuart B. Palmer Advanced 

university physics, 2006) 

 

In spherical coordinates the Laplace operator is: 
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If the problem has a spherical symmetry, as e.g. for a point-like source, physical 

quantities depend only on r and t. The derivatives along   and  are zero. The wave 

eq. in vacuum writes: 
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This may also be written as  
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From Wikipedia (slightly changed) till end 

Diffraction arises because of the way in which waves propagate; this is described by 
the Huygens–Fresnel principle. The propagation of a wave can be visualized by 
considering every point on a wavefront as a point source for a secondary spherical 
wave. The subsequent propagation and addition of all these spherical waves form the 
new wavefront. When waves are added together, their sum is determined by the 
relative phases as well as the amplitudes of the individual waves, an effect which is 
often known as wave interference. The summed amplitude of the waves can have any 
value between zero and the sum of the individual amplitudes. Hence, diffraction 
patterns usually have a series of maxima and minima. 

 

Diffraction through a hole in a screen, photo in a ripple tank; water waves move from 
upper left to lower right, bump into the obstacle with a hole in the middle of the 
figure. Spherical (cylindrical) waves result. For the ripple tank see fine simulations at 
http://www.falstad.com/ripple/  

See esp. the Fourier applet http://www.falstad.com/fourier/  

The form of a diffraction pattern can be determined from the sum of the phases and 
amplitudes of the Huygens wavelets at each point in space. There are various 
analytical models which can be used to do this including the Fraunhofer diffraction 
equation for the far field and the Fresnel diffraction equation for the near field end 
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Spherical waves (Mircea S. Rogalschi, Stuart B. Palmer Advanced university 

physics, 2006) 

 

In spherical coordinates the Laplace operator is: 
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If the problem has a spherical symmetry, as e.g. for a point-like source, physical 

quantities depend only on r and t. The derivatives along   and  are zero. The wave 

eq. in vacuum writes: 
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This may also be written as  

 

          0,1, 2

2

22

2







 trr

tc
trr

r
   (D2) 

 

This is a differential eq. for the function  trr ,  having the same form as the 

wave eq. In 1D for the function  tx, . The solution (d'Alembert) is  

 

         ctrgctrftrr ,   (D3) 

 

For any component of the electric or magnetic field this gives: 
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The first term is an outgoing perturbation with amplitude falling off as 1/r, 

known as the direct wave. The second term is an incoming spherical disturbance 

toward a point detector. For a harmonic spherical wave we find 
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Remark: the intensity diminishes with a factor 1/r2. Therefore the total energy 

flux through a sphere of radius r remains the same, but this energy is spread over a 

surface larger and larger. 

 

 

3. The Huygens-Fresnel diffraction 

 

Eq. (D5) will be used to give a mathematical expression to the Huygens-Fresnel 

principle. In the following figure S  is the point-like source of monochromatic light, 

1S  and 2S  are two small areas belonging to the wave front, P is the observation 

point, R is the distance between S and the wave front, r is the distance beween 1S  

(or 2S ) and P. Q1 and Q2 are the points around which we sketch the secondary 

waves prescribed by the Huygens-Fresnel principle. RRR  21 , rrr  21 . 

Remark: if the points Q1 and Q2 are not on the spherical wave front, or if P is not 

so symmetrically disposed the distances SQ1 and SQ2 wouldn't be equal, nor would be 

equal Q1P and Q2P. 

 

 
The spherical wave from S arrives in Q1 or Q2 as  

 

    1
1

11 exp, kRti
R
AtQ      and     2

2
22 exp, kRti

R
AtQ    

 



 5

The same relations apply in the propagation from Q1 and Q2 toward P. The 

amplitudes are different, because we assume the secondary waves from Qi to be 

proportional to iS  and the propagation from Qi to P introduces a factor 
i

i
r
ikr ]exp[

. 

The resultant wave at P is: 
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Dividing the wave front in small areas dS and transforming sum in integral we 

find: 
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The constant C is not known from this deduction based on interference only. It 

turns out (from Kirchhoff formulation) that it depends on: 

- a phase shift of secondary waves  

- the angles between the initial propagation, the surface normal and the 

propagation direction of secondary waves. 

 

4. The results of Kirchhoff 

 

We give without proof the results of Kirchhoff for the case rR, . The 

angles are defined in the following figure: 
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The result is: 
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The two additional effects included in the Kirchhoff relation are: 

- a phase shift by 2/  

- an angular dependence on both directions of propagations, defined by 

the obliquity factor       RnrnRr uuuuuuK  ,cos,cos
2
1,   

This factor becomes zero in the backward direction, thus providing an 

explanation for the absence of the backward wave. 

 

5. The Fraunhoffer diffraction 

 

Assume rR,  dimensions of the aperture. Then the obliquity factor could be 

considered constant and the variations of R and r over the aperture are small and 1/Rr  

could be considered constant too. The changes in R+r affects, however, the phase 

contribution of different elements from the aperture, due to the large value of the 

wave vector k. (D7) reduces to: 
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When the distances of both the source and the point of observation from the 

aperture   are large, the wave front may be considered plane. The approximation is 

known as the far field or the Fraunhoffer diffraction. Denote by (X, Y) the coordinates 

in the plane of the aperture and by  ,  the direction cosines of ru . Put 



p , 




q . The Fraunhoffer diffraction formula is given by: 
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Quantities p and q are known as spatial frequencies and (D9) is a 2D Fourier 

transform. 
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Example 1. Far field diffraction by a slit 

    
The slit has width b in the Y-direction and is illuminated by a hpw. The problem 

is 1D.  
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The corresponding intensity is: 
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Example 2. Diffraction grating. 

The intensity diffracted by N slits is a composition of relations (I10) and (D11): 
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Remember: b is the width of each slit, d is the distance between two slits. The 

figure is drawn for N=5. 
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In 2D (Wikipedia): 

 
In 3D: used to investigate crystal structures and molecular structures.  
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6. Fresnel diffraction 

 

If the source and the observation point are close to the obstacle we deal with 

near field or Fresnel diffraction. The explanation of the diffraction pattern is made 

using the construction made first by Fresnel. In the following figure S is a point-like 

source, P is the observation point and r0 is the distance between P and the wave front 

reaching the aperture. The Fresnel method is applied if S and P are close to the axis 

and if aperture  theof dimensions,,0 Rr . 

 
Fresnel's construction 
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Fresnel zones  

 

With the center in the observation point P draw the sphere of radius r0 and then 

successive spheres with radii 2/...,,2/3,2/2,2/ 0000  mrrrr  , until all 

the surface of the aperture is covered.These spheres produce on the wave front surface 

a family pf spherical zones called Fresnel zones.  

Remark: Spherical zones are actually bordered by planes, not by spheres, but if 

aperture  theof dimensions,,0 Rr the constructed spheres may be approximated 

with planes. 

The reason for this construction is that the path difference between beams 

originating from adjacent Fresnel zones differs by 2/  and then contributions from 

adjacent zones have opposed phases. As we shall demonstrate, Fresnel zones have 

almost equal areas. Therefore their contributions in P are almost equal, except for the 

obliquity factor, diminishing from the center toward the border. But the contribution 

from the p'th zone equals half the sum of contributions from its neighbors: 

2
11  

 pp
p

EE
E . The minus appears from the 2/  path difference. 
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Problem: Show that areas of different Fresnel zones are almost equal. Hint: the 

area of a spherical zone is given by the following argument (from Mathematica): the 

solution until the end 

 
  

 

The surface area of a spherical segment. Call the radius of the sphere , the upper and 
lower radii and , respectively, and the height of the spherical segment . The zone is 
a surface of revolution about the z-axis, so the surface area is given by  

 
(1) 

In the -plane, the equation of the zone is simply that of a circle,  

 (2) 

so  

 (3) 

 
(4) 

and  

 
(5) 

 
(6) 

 
(7) 

 (8) 

This result is somewhat surprising since it depends only on the height of the zone, not 
its vertical position with respect to the sphere. 
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The result is: RhS 2 , where R is the radius of the wave-front sphere and h  is 

the height of the zone. Let's compute the area of the spherical cap with height h=OA  

and radius AQj   containing j zones (actually j-1 zones and the cap) (see e.g. 

http://mathworld.wolfram.com/SphericalCap.html ) 

 

The area is RhS j 2 . From triangles SAQ and PAQ we find: 
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The amplitudes of the fields arriving in P are different only concerning rj and 

the obliquity factor; the radius R is the same for all and their areas are equal. As the 

order j increases, so do the distance rj and the angle, so we expect the electric field 

contribution to decrease steadily. Assume  
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Compute the total field in P: 
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Or, because the brackets are almost zero: 

 

 
2

1
2

)( 11 mm EEPE     (D14) 

 

Applications: see the lectures. 

 

X-ray diffraction 

See Wikipedia  

http://en.wikipedia.org/wiki/File:X-ray_diffraction_pattern_3clpro.jpg 
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