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Preface

Since the first edition of this book was published in 2001, the algebraic computa-
tion package Maple™ has evolved from Maple V into Maple 13. Accordingly, the
second edition has been thoroughly updated and new material has been added. In
this edition, there are many more applications, examples, and exercises, all with
solutions, and new chapters on neural networks and simulation have been added.
There are also new sections on perturbation methods, normal forms, Gröbner bases,
and chaos synchronization.

This book provides an introduction to the theory of dynamical systems with
the aid of the Maple algebraic manipulation package. It is written for both senior
undergraduates and graduate students. The first part of the book deals with con-
tinuous systems using ordinary differential equations (Chapters 1–10 ), the second
part is devoted to the study of discrete dynamical systems (Chapters 11–15), and
Chapters 16–18 deal with both continuous and discrete systems. Chapter 19 lists
examination-type questions used by the author over many years, one set to be
used in a computer laboratory with access to Maple, and the other set to be used
without access to Maple. Chapter 20 lists answers to all of the exercises given
in the book. It should be pointed out that dynamical systems theory is not lim-
ited to these topics but also encompasses partial differential equations, integral
and integro-differential equations, stochastic systems, and time delay systems, for
instance. References [1]–[5] given at the end of the Preface provide more infor-
mation for the interested reader. The author has emphasized breadth of coverage
rather than fine detail, and theorems with proofs are kept to a minimum. The ma-
terial is not clouded by functional analytic and group theoretical definitions, and
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so is intelligible to readers with a general mathematical background. Some of the
topics covered are scarcely covered elsewhere. Most of the material in Chapters 9,
10, 14, 16, 17, and 18 is at the postgraduate level and has been influenced by the
author’s own research interests. There is more theory in these chapters than in the
rest of the book since it is not easily accessed anywhere else. It has been found that
these chapters are especially useful as reference material for senior undergraduate
project work. The theory in other chapters of the book is dealt with more compre-
hensively in other texts, some of which may be found in the references section of
the corresponding chapter. The book has a very hands-on approach and takes the
reader from basic theory right through to recently published research material.

Maple is extremely popular with a wide range of researchers from all sorts of
disciplines. It is a symbolic, numerical, and graphical manipulation package which
makes it ideal for the study of nonlinear dynamical systems.

An efficient tutorial guide to Maplesoft’s Maple symbolic computation sys-
tem has been included in Chapter 0. The reader is shown how to use both text-based
input commands and palettes. Students should be able to complete Tutorials One
and Two in under two hours depending upon their past experience. New users
will find that the tutorials enable them to become familiar with Maple within a
few hours. Both engineering and mathematics students appreciate this method of
teaching, and the author has found that it generally works well with a ratio of one
staff member to about 20 students in a computer laboratory. Those moderately
familiar with the package and even expert users will find Chapter 0 to be a useful
source of reference. The Maple worksheet files are listed at the end of each chapter
to avoid unnecessary cluttering in the text. The author suggests that the reader save
the relevant example programs listed throughout the book in separate worksheets.
These programs can then be edited accordingly when attempting the exercises at
the end of each chapter. The Maple worksheets, commands, programs, and output
can also be viewed in color over the Web at the author’s book site:

http://www.docm.mmu.ac.uk/STAFF/S.Lynch/cover1.html.

Maple files can be downloaded at Maplesoft’s Application Center:

http://www.maplesoft.com/applications/.

Throughout this book, Maple is viewed as a tool for solving systems or producing
eye-catching graphics. The author has used Maple 13 in the preparation of the
material. However, the Maple programs have been kept as simple as possible and
should also run under later versions of the package. One of the advantages of using
the Application Center rather than a companion CD-ROM is that programs can be
updated as new versions of Maple are released.

The first few chapters of the book cover some theory of ordinary differential
equations, and applications to models in the real world are given. The theory of
differential equations applied to chemical kinetics and electric circuits is intro-
duced in some detail. Chapter 1 ends with the existence and uniqueness theorem
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for the solutions of certain types of differential equations. A variety of numerical
procedures are available in Maple when solving stiff and nonstiff systems when
an analytic solution does not exist or is extremely difficult to find. The theory
behind the construction of phase plane portraits for two-dimensional systems is
dealt with in Chapter 2. Applications are taken from chemical kinetics, economics,
electronics, epidemiology, mechanics, and population dynamics. The modeling of
populations of interacting species are discussed in some detail in Chapter 3, and
domains of stability are discussed for the first time. Limit cycles, or isolated peri-
odic solutions, are introduced in Chapter 4. Since we live in a periodic world, these
are the most common type of solution found when modeling nonlinear dynami-
cal systems. They appear extensively when modeling both the technological and
natural sciences. Hamiltonian, or conservative, systems and stability are discussed
in Chapter 5, and Chapter 6 is concerned with how planar systems vary depend-
ing upon a parameter. Bifurcation, bistability, multistability, and normal forms are
discussed.

The reader is first introduced to the concept of chaos in Chapters 7 and 8,
where three-dimensional systems and Poincaré maps are investigated. These
higher-dimensional systems can exhibit strange attractors and chaotic dynamics.
One can rotate the three-dimensional objects in Maple and plot time series plots
to get a better understanding of the dynamics involved. A new feature in Maple
13 is the fly through animation for three-dimensional plots. Once again, the theory
can be applied to chemical kinetics (including stiff systems), electric circuits, and
epidemiology; a simplified model for the weather is also briefly discussed. Chapter
8 deals with Poincaré first return maps that can be used to untangle complicated
interlacing trajectories in higher-dimensional spaces. A periodically driven non-
linear pendulum is also investigated by means of a nonautonomous differential
equation. Both local and global bifurcations are investigated in Chapter 9. The
main results and statement of the famous second part of David Hilbert’s sixteenth
problem are listed in Chapter 10. In order to understand these results, Poincaré
compactification is introduced. The study of continuous systems ends with one of
the author’s specialities—limit cycles of Liénard systems. There is some detail on
Liénard systems, in particular, in this part of the book, but they do have a ubiquity
for systems in the plane.

Chapters 11–15 deal with discrete dynamical systems. Chapter 11 starts with
a general introduction to iteration and linear recurrence (or difference) equations.
The bulk of the chapter is concerned with the Leslie model used to investigate the
population of a single species split into different age classes. Harvesting and culling
policies are then investigated and optimal solutions are sought. Nonlinear discrete
dynamical systems are dealt with in Chapter 12. Bifurcation diagrams, chaos, in-
termittency, Lyapunov exponents, periodicity, quasiperiodicity, and universality
are some of the topics introduced. The theory is then applied to real-world prob-
lems from a broad range of disciplines, including population dynamics, biology,
economics, nonlinear optics, and neural networks. Chapter 13 is concerned with
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complex iterative maps; Julia sets and the now-famous Mandelbrot set are plotted.
Basins of attraction are investigated for these complex systems. As a simple intro-
duction to optics, electromagnetic waves and Maxwell’s equations are studied at
the beginning of Chapter 14. Complex iterative equations are used to model the
propagation of light waves through nonlinear optical fibers. A brief history of non-
linear bistable optical resonators is discussed, and the simple fiber ring resonator
is analyzed in particular. Chapter 14 is devoted to the study of these optical res-
onators, and phenomena such as bistability, chaotic attractors, feedback, hysteresis,
instability, linear stability analysis, multistability, nonlinearity, and steady-states
are discussed. The first and second iterative methods are defined in this chapter.
Some simple fractals may be constructed using pencil and paper in Chapter 15,
and the concept of fractal dimension is introduced. Fractals may be thought of as
identical motifs repeated on ever-reduced scales. Unfortunately, most of the frac-
tals appearing in nature are not homogeneous but are more heterogeneous, hence
the need for the multifractal theory given later in the chapter. It has been found
that the distribution of stars and galaxies in our universe is multifractal, and there
is even evidence of multifractals in rainfall, stock markets, and heartbeat rhythms.
Applications in materials science, geoscience, and image processing are briefly
discussed.

Chapter 16 is devoted to the new and exciting theory behind chaos control and
synchronization. For most systems, the maxim used by engineers in the past has
been “stability good, chaos bad,” but more and more nowadays this is being replaced
with “stability good, chaos better.” There are exciting and novel applications in
cardiology, communications, engineering, laser technology, and space research,
for example.

A brief introduction to the enticing field of neural networks is presented in
Chapter 17. Imagine trying to make a computer mimic the human brain. One could
ask the question: In the future will it be possible for computers to think and even
be conscious? Sony’s artificial intelligent robotic dog, AIBO, has been a popular
toy with both adults and children, and more recently, Hanson Robotics and Mas-
sive Software have partnered to create an interactive artificial intelligent robot boy
called Zeno. The reader is encouraged to browse through some of the video clips on
YouTube to see how these, and other, robots behave. The human brain will always
be more powerful than traditional, sequential, logic-based digital computers, and
scientists are trying to incorporate some features of the brain into modern comput-
ing. Neural networks perform through learning, and no underlying equations are
required. Mathematicians and computer scientists are attempting to mimic the way
neurons work together via synapses; indeed, a neural network can be thought of
as a crude multidimensional model of the human brain. The expectations are high
for future applications in a broad range of disciplines. Neural networks are already
being used in pattern recognition (credit card fraud, prediction and forecasting, dis-
ease recognition, facial and speech recognition), the consumer home entertainment
market, psychological profiling, predicting wave overtopping events, and control



Preface xvii

problems, for example. They also provide a parallel architecture allowing for very
fast computational and response times. In recent years, the disciplines of neural
networks and nonlinear dynamics have increasingly coalesced, and a new branch
of science called neurodynamics is emerging. Lyapunov functions can be used to
determine the stability of certain types of neural networks. There is also evidence of
chaos, feedback, nonlinearity, periodicity, and chaos synchronization in the brain.

Examples of Simulink® and MapleSim® models, referred to in earlier chap-
ters of the book, are presented in Chapter 18. It is possible to change the type of
input into the system, or parameter values, and investigate the output very quickly.
There is a section on the MapleSim Connectivity Toolbox® where readers can use
Maple to produce blocks to be used within the Simulink environment. This is as
close as one can get to experimentation without the need for expensive equipment.
Note that you need MATLAB® and Simulink®, developed by the MathWorks®, to
run Simulink models, and you need Maple 12.0.2 or later versions to run MapleSim.

Both textbooks and research papers are presented in the list of references.
The textbooks can be used to gain more background material, and the research
papers have been included to encourage further reading and independent study.

This book is informed by the research interests of the author, which currently
are nonlinear ordinary differential equations, nonlinear optics, multifractals, and
neural networks. Some references include recently published research articles by
the author.

The prerequisites for studying dynamical systems using this book are un-
dergraduate courses in linear algebra, real and complex analysis, calculus, and
ordinary differential equations; a knowledge of a computer language such as C or
Fortran would be beneficial but not essential.
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0
A Tutorial Introduction to Maple

Aims and Objectives
• To provide a tutorial guide to Maple.

• To give practical experience in using the package.

• To promote self-help using the online help facilities.

• To provide a concise source of reference for experienced users.

On completion of this chapter, the reader should be able to

• use Maple as a tool;

• produce simple Maple worksheets;

• access some Maple commands and worksheets over the World Wide Web.

It is assumed that the reader is familiar with either the Windows or UNIX
platform. This book was prepared using Maple (Version 13), but most programs
should work under earlier and later versions of the package. Note that the online
version of the Maple commands for this book will be written using the most up to
date version of the package.

The command lines and programs listed in this chapter have been chosen to
allow the reader to become familiar with Maple within a few hours. They provide
a concise summary of the type of commands that will be used throughout the

S. Lynch, Dynamical Systems with Applications using MapleTM  
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text. New users should be able to start on their own problems after completing
the chapter, and experienced users should find this chapter an excellent source of
reference. Of course, there are many Maple textbooks on the market for those who
require further applications or more detail.

If you experience any problems, there are several options for you to take.
There is an excellent index within Maple, and Maple commands, worksheets, pro-
grams, and output can also be viewed in color over the Web at

http://www.docm.mmu.ac.uk/STAFF/S.Lynch

or downloaded at the Maple Application Center

http://www.maplesoft.com/applications/.

0.1 A Quick Tour of Maple
To start Maple, simply double-click on the Maple icon. In the Unix environment,
one types maple as a shell command. The author has used the Windows platform in
the preparation of this material. When Maple starts up, a blank worksheet appears
on the computer screen entitled Untitled (1) and some palettes with buttons appear
along the left-hand side. Some examples of palettes are given in Figure 0.1. The
buttons on the palettes serve essentially as additional keys on the user’s keyboard.
Input to the Maple worksheet can either be performed by typing in text commands or
pointing and clicking on the symbols provided by various palettes and subpalettes.

Maple has two standard worksheet interfaces: Document mode and Work-
sheet mode. The Document mode is designed for quick calculations either by
typing in commands or using the buttons on the palettes. The user can enter a
mathematical expression and then evaluate, manipulate, plot, or solve with a few
keystrokes or mouse clicks. Using the Document mode, the user can access Maple
without needing to know the Maple syntax. There are two types of content that
can be typed in Document mode; these are Text and Math modes. It is important
to note that you can only execute a statement if it is entered in Math mode. It
is impossible to convey the full functionality of Maple in a book; therefore, it is
highly recommended that all users of Maple watch the Maple 13 demo movie at the
Maplesoft website (http://www.maplesoft.com/). Readers may also be interested
in the products Maple Toolbox for MATLAB, Connectivity Toolbox for Simulink,
Placement Test Suite, Maple T.A., and MapleNet. The Connectivity Toolbox for
Simulink is discussed in Chapter 18.

The Worksheet mode is designed for interactive use through Maple com-
mands, which may offer advanced functionality or customized control not avail-
able using context menus or other syntax-free methods. Using either mode, one
can create high-quality interactive mathematical documents or presentations.

As this book relies heavily on Maple programming, the author has decided
to adopt the Maple Worksheet mode. It is also the mode that the author has used
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(a) (b)

(c) (d)

Figure 0.1: Some Maple palettes: (a) common symbols; (b) expression; (c) units
(FPS); (d) units (SI).

for many years. However, the use of palettes can save some time in typing, and the
reader may wish to experiment in the Document mode. To create a Maple document
in Worksheet mode, click on File, New and choose Worksheet Mode in the Maple
window.

Maple can be used to generate full publication-quality documents. In fact, all
of the Maple Help pages have been created in either Document mode or Worksheet
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mode. The Help menu also includes an online version Maplesoft’s documentation.
The author recommends a brief tour of some of the Help pages to give the reader
an idea of how the worksheets can be used. For example, click on the Help toolbar
at the top of the Maple graphical user interface and scroll down to Help Maple.
Simply type in solve in the Search box and type ENTER; an interactive Maple help
page will be opened showing the syntax, some related commands, and examples of
the solve command. You can then Edit and Copy examples into your worksheet.

The author has provided the reader with a tutorial introduction to Maple in
Sections 0.2, 0.3, and 0.4. Each tutorial should take no more than one hour to
complete. The author highly recommends that new users go through these tutorials
line by line; however, readers already familiar with the package will probably use
Chapter 0 as reference material only.

Tutorial One provides a basic introduction to the Maple package. The first
command line shows the reader how to input comments, which are extremely useful
when writing long or complicated programs. The reader will type in # This is a
comment after the “>” prompt and then type ENTER or RETURN. Maple will
label the first input with > # This is a comment. Note that no output is given for a
comment. The second input line is simple arithmetic. The reader types 1+2-3; and
types ENTER to compute the result. Note that Maple requires a delimeter, either
a semicolon to see the output or a colon to suppress the output. Maple labels the
second input with > 1+2-3; and labels the corresponding output, zero in this case,
with (1). As the reader continues to input new command lines, the output numbers
change accordingly. This allows users to easily label output that may be useful later
in the worksheet. Tutorial Two contains graphic commands and commands used to
solve simple differential equations. Tutorial Three provides a simple introduction
to programming with Maple.

The tutorials are intended to give the reader a concise and efficient introduc-
tion to the Maple package. Many more commands are listed in other chapters of
the book, where the output has been included. Of course, there are many Maple
textbooks on the market for those who require further applications or more detail.
A list of some textbooks is given in the reference section of this chapter.

0.2 Tutorial One: The Basics (One Hour)
There is no need to copy the comments; they are there to help you. Click on the
Maple icon and copy the commands. Press ENTER at the end of a line to see the
answer. You can interrupt a calculation at any time by clicking on the “Interrupt
the current operation” icon in the toolbar. Recall that a working Maple worksheet
of Tutorial One can be downloaded from the Maple Application Center at

http://www.maplesoft.com/applications/.
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Maple Commands Comments

> # This is a comment. # Helps when writing

# programs.

> 1+2-3; # Simple addition and

# subtraction.

> 2*3/7; # Multiplication and

# division.

> 2*6+3ˆ2-4/2; # Powers.

> (5+3)*(4-2); # Brackets.

> sqrt(100); # The square root.

> n1:=10: # The colon suppresses

# the output.

> printf("n1=%-d",n1): # Print the value

# of n1.

> n1ˆ(-1); # Negative powers.

> sin(Pi/3); # Use capital P for Pi.

> evalf(sin(Pi/3)); # Evaluate as a floating

# point number.

> y:=sin(x)+3*xˆ2; # Equations and

# assignments.

> diff(y,x); # Differentiate y with

# respect to x.

> y:=’y’: # Set y back equal to y.

> diff(xˆ3*yˆ2,x$1,y$2); # Partial differentiation.

> int(cos(x),x); # Integration with

# respect to x.

> int(x/(xˆ3-1),x=0..1); # Definite integration.

> int(1/x,x=1..infinity); # Improper integration.

> convert(1/((s+1)*(s+2)),parfrac,s); # Split into partial

# fractions.

> expand(sin(x+y)); # Expansion.

> factor(xˆ2-yˆ2); # Factorization.

> limit((cos(x)-1)/x,x=0); # The limit as x goes

# to zero.
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> z1:=3+2*I:z2:=2-I: # Complex numbers. Use

# I NOT i.

> z3:=z1+z2;

> z4:=z1*z2/z3;

> modz1:=abs(z1); # Modulus of a complex

# number.

> evalc(exp(I*z1)); # Evaluate as a complex

# number.

> solve({x+2*y=1,x-y=3},{x,y}); # Solve two simultaneous

# equations.

> fsolve(x*cos(x)=0,x=7..9); # Find a root in a given

# interval.

> series(xˆx,x=0,8); # Series expansion about 0.

> series(xˆ3/(xˆ4+4*x-5,x=infinity)); # Asymptotic expansion.

> S:=sum(iˆ2,i=1..n); # A finite sum.

> with(LinearAlgebra): # Load the linear algebra

# package.

> u:=<1,2,3>;v:=<1|2|3>; # Two vectors.

> u.u; # Dot product.

> u &x u; # Cross product.

> A:=Matrix([[1,2],[3,4]]); # Defining 2 by 2

> B:=Matrix([[1,0],[-1,3]]); # matrices.

> Bˆ(-1); # Matrix inverse.

> C:=A+2*B; # Evaluate the new

# matrix.

> AB:=A.B; # Matrix multiplication.

> A1:=Matrix([[1,0,4],[0,2,0],[3,1,-3]]);

> Determinant(A1); # The determinant.

> Eigenvalues(A1); # Gives the eigenvalues

# of A1.

> Eigenvectors(A1); # Gives the eigenvectors

# of A1.

> with(inttrans); # Transforms package.

> laplace(tˆ3,t,s); # Laplace transform.
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> invlaplace(6/sˆ4,s,t); # Inverse transform.

> fourier(tˆ4*exp(-tˆ2),t,w); # Fourier transform.

> invfourier(%,w,t); # Transform previous line.

> ?coeff # Open a help page for

# coeff.

> ??coeff # List the syntax for

# this command.

> ???coeff # List some examples.

> # End of Tutorial One.

0.3 Tutorial Two: Plots and Differential Equations
(One Hour)

Maple has excellent graphical capabilities and many solutions of nonlinear systems
are best portrayed graphically. The graphs produced from the input text commands
listed below may be found in the Tutorial Two worksheet, which can be downloaded
from the Maple Application Center. Plots in other chapters of the book are referred
to in many of the Maple programs at the end of each chapter.

> # Plotting graphs.

> # Set up the domain and plot a simple function.

> plot(cos(2*x),x=0..4*Pi,font=[TIMES,ROMAN,20],color=black);

> # Plot two curves on one graph.

> plot({x*cos(x),x-2},x=-5..5);

> # Plotting with a title.

> plot(xˆ3,x=-3..3,y=-30..30,title=‘A cubic polynomial‘);

> # Plotting with discontinuities.

> plot(tan(x),x=-2*Pi..2*Pi,y=-10..10,discont=true);

> # Plotting with different line styles.

> c1:=plot(sin(x),x=-2*Pi..2*Pi,linestyle=1):

> c2:=plot(2*sin(2*x-Pi/2),x=-2*Pi..2*Pi,linestyle=3):

> display({c1,c2});

> # Plotting points.

> points:=[[n,sin(n)]$n=1..10]:

> plot(points,x=0..15,style=point,symbol=circle);
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> # Surface plot.

> plot3d(yˆ2*xˆ2/2+xˆ2*yˆ2/2-xˆ2/2-yˆ2/2,x=-2..2,y=-2..2,

axes=boxed);

> # A contour plot.

> contourplot(yˆ2*xˆ2/2+xˆ2*yˆ2/2-xˆ2/2-yˆ2/2,x=-2..2,y=-2..2,

contours=50,grid=[50,50]);

> # A cylinder plot.

> cylinderplot(z+3*cos(2*theta),theta=0..Pi,z=0..3);

> # An implicit plot.

> implicitplot(yˆ2+y=xˆ3-x,x=-2..3,y=-3..3,numpoints=1000);

> # Solving simple ODEs analytically and numerically.

> # Load the differential equations package.

> with(DEtools):

> # Solve a simple ODE.

> dsolve(diff(y(x),x)=x,y(x));

> # Solve an initial value problem (IVP).

> dsolve({diff(v(t),t)+2*t=0,v(1)=5},v(t));

> # Solve a second order ODE.

> dsolve(diff(x(t),t$2)+8*diff(x(t),t)+25*x(t)=0,x(t));

> # Plot a solution curve for a second order ODE.

> deqn:=diff(y(x),x$2)=xˆ3*y(x)+1;

> DEplot(deqn,y(x),x=-5..2,[[y(0)=0.5,D(y)(0)=1]],linecolor=blue,

thickness=1);

> # Plot the solution curve for a stiff van der Pol system of ODEs.

> mu:=1000:

> deq:=diff(y(x),x,x)-mu*(1-y(x)ˆ2)*diff(y(x),x)+y(x)=0:

> ics:={y(0)=2,D(y)(0)=0}:

> dsol:=dsolve({deq} union ics,numeric,range=0..3000,stiff=true ):

> plots[odeplot](dsol,[x,y(x)]);

0.4 Simple Maple Programs
Sections 0.1, 0.2, and 0.3 illustrate the interactive nature of Maple. More involved
tasks will require more code. Each Maple program is displayed between horizontal
lines and kept short to aid in understanding; the output is also included. Type
SHIFT-ENTER at the end of a command line so that the program will execute on
one ENTER command.
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In Document mode, the reader should use the Exploration assistant for Inter-
active Exploration.

Procedures. Declare local variables within procedures.

> # Program 1: Procedures.

> # The norm of a 3-dimensional vector.

> norm3d:=proc() local a,b,c;sqrt(aˆ2+bˆ2+cˆ2) end;

> norm3d(3,4,5);

5
√

(2)

> # Program 2: For..do..end loop.

> # Sum the natural numbers from 1 to 100.

> i:=‘i‘:total:=0:

for i from 0 to 100 do

total:=i+total:

end do:

total;

5050

> # Program 3: If..then..elif...else.

> # Determine if p is less than or not less than 2.

> p:=4:

if p<2 then printf("p is less than 2");

elif p>=2 then printf("p is not less than 2");

end if;

p is not less than 2

> # Program 4: Arrays and sequences.

> # List the first 10 terms of the Fibonacci sequence.

> F:=array(1..10000):

F[1]:=1:F[2]:=1:N:=10:

for i from 3 to N do

F[i]:=F[i-1]+F[i-2]:

end do:

seq(F[i],i=1..N);

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

> # Program 5: Iteration.

> # List the last 10 iterates of the logistic map.

> mu:=3.2:x[0]:=0.2:

for n from 0 to 99 do
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x[n+1]:=mu*x[n]*(1-x[n]):

end do:

for n from 90 to 99 do

nprintf("x[%-d]=%g",n+1,x[n+1]);

end do;

x[91]=0.513044, x[92]=0.799455, x[93]=0.513044, x[94]=0.799455,
x[95]=0.513044, x[96]=0.799455, x[97]=0.513044, x[98]=0.799455,
x[99]=0.513044, x[100]=0.799455

> # Program 6: Multiple plots with text.

> # Figure 0.2: Plot solution curves to ODEs.

> # Note that it is sometimes better to label colored curves with colored

> # text, as below. Figure 0.2 in the book is a black and white version.

> deqn1:=diff(x(t),t$2)=-2*diff(x(t),t)-25*x(t):

p3:=DEplot(deqn1,x(t),t=0..10,[[x(0)=1,D(x)(0)=0]],stepsize=0.1,

linecolor=blue,thickness=1):

deqn2:=diff(x(t),t$2)=-25*x(t):

p4:=DEplot(deqn2,x(t),t=0..10,[[x(0)=1,D(x)(0)=0]],stepsize=0.1,

linecolor=red,thickness=1):

t3:=textplot([6,1,‘Harmonic motion‘],align=RIGHT,color=red):

t4:=textplot([1.8,0.2,‘Damped motion‘],align=RIGHT,color=blue):

display({p3,p4,t3,t4},labels=[‘t‘,‘x‘]);

1 2 3 4 5 6
t

�1

�0.5

0.5

1
x

Figure 0.2: Harmonic and damped motion of a pendulum.

> # Program 7: Interactive exploration. Intersecting curves.

> # On execution of the command, an interactive parameter Maplet

> # pops up with a parameter slider. The plot varies as the slider is

> # moved up and down.

> restart:with(DEtools):with(plots):

interactiveparams(plot,[{1-a*x,(x-1)/a},x=0..2],a=0..1);
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> # Program 8: Interactive exploration. Solutions to a system of

> # differential equations.

> # On execution of the command, an interactive parameter Maplet

> # pops up with two parameter sliders. The plot varies as the sliders

> # are moved up and down.

> restart:with(DEtools):with(plots):

sys1:=diff(x(t),t)=-a*x(t),diff(y(t),t)=a*x(t)-b*y(t),diff(z(t),t)

=b*y(t);

dsolve([sys1,x(0)=10,y(0)=0,z(0)=0]);

interactiveparams(plot,[{10*exp(-a*t),

10*a*exp(-b*t)/(a-b)-10*a*exp(-a*t)/(a-b),

(10*exp(-a*t)*b-10*exp(-b*t)*aˆ2/(a-b)+

10*exp(-b*t)*a*b/(a-b)+10*a-10*b)/(a-b)},t=0..30],

a=0.1..0.9,b=0.1..0.8);

Figure 0.3: Solution curves for Program 8 when a = 0.5 and b = 0.45.

0.5 Hints for Programming
The Maple language contains very powerful commands, which means that some
complex programs may contain only a few lines of code. Of course, the only way to
learn programming is to sit down and try it yourself. This section has been included
to point out common errors and give advice on how to troubleshoot. Remember
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to check the Help pages in Maple and the Web if the following does not help you
with your particular problem.

Common typing errors. The author strongly advises new users to type Tutorials
One, Two, and Three into their own worksheets; this should reduce typing errors.

• All command lines must end with a colon or semicolon.

• Type ENTER at the end of every command line.

• If a command line is ended with a colon, the output will not be displayed.

• Make sure brackets, parentheses, etc. match up in correct pairs.

• Remember Maple is case sensitive.

• Check the syntax; type ??solve to list syntax for the solve command, for
example.

Programming tips. The reader should use the Maple programs listed in Sec-
tion 0.4 to practice simple programming techniques.

• Use the restart command at the beginning of a new program.

• Use comments throughout a program. You will find them extremely useful
in the future.

• Use procedures to localize variables. This is especially useful for very large
programs.

• If a program involves a large number of iterations (e.g., 50,000), then run it
for three iterations first and list all output.

• If the computer is not responding, click on the interrupt icon and try reducing
the size of the problem.

• Read the error message printed by Maple.

• Find a similar Maple program in a book or on the Web and edit it to meet
your needs.

• Check which version of Maple you are using. The syntax of some commands
may have altered. For example, some Maple 11 programs will not run under
Maple 13.
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0.6 Maple Exercises
1. Evaluate the following:

(a) 4 + 5 − 6;

(b) 312;

(c) sin(0.1π);

(d) (2 − (3 − 4(3 + 7(1 − (2(3 − 5))))));

(e) 2
5 − 3

4 × 2
3 .

2. Given that

A =
⎛
⎝ 1 2 −1

0 1 0
3 −1 2

⎞
⎠, B =

⎛
⎝ 1 2 3

1 1 2
0 1 2

⎞
⎠, C =

⎛
⎝ 2 1 1

0 1 −1
4 2 2

⎞
⎠,

determine the following:

(a) A + 4BC;

(b) the inverse of each matrix if it exists;

(c) A3;

(d) the determinant of C;

(e) the eigenvalues and eigenvectors of B.

3. Given that z1 = 1 + i, z2 = −2 + i, and z3 = −i, evaluate the following:

(a) z1 + z2 − z3;

(b) z1z2
z3

;

(c) ez1 ;

(d) ln(z1);

(e) sin(z3).

4. Evaluate the following limits if they exist:

(a) limx→0
sin x

x
;

(b) limx→∞ x3+3x2−5
2x3−7x

;

(c) limx→π
cos x+1
x−π

;

(d) limx→0+ 1
x

;

(e) limx→0
2 sinh x−2 sin x

cosh x−1 .
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5. Find the derivatives of the following functions:

(a) y = 3x3 + 2x2 − 5;

(b) y = √
1 + x4;

(c) y = ex sin x cos x;

(d) y = tanh x;

(e) y = xln x .

6. Evaluate the following definite integrals:

(a)
∫ 1
x=0 3x3 + 2x2 − 5 dx;

(b)
∫ ∞
x=1

1
x2 dx;

(c)
∫ ∞
−∞ e−x2

dx;

(d)
∫ 1

0
1√
x

dx;

(e)
∫ 2

π

0
sin(1/t)

t2 dt .

7. Graph the following:

(a) y = 3x3 + 2x2 − 5;

(b) y = e−x2
, for −5 ≤ x ≤ 5;

(c) x2 − 2xy − y2 = 1;

(d) z = 4x2ey − 2x4 − e4y , for −3 ≤ x ≤ 3 and −1 ≤ y ≤ 1;

(e) x = t2 − 3t , y = t3 − 9t , for −4 ≤ t ≤ 4.

8. Solve the following differential equations:

(a) dy
dx

= x
2y

, given that y(1) = 1;

(b) dy
dx

= −y
x

, given that y(2) = 3;

(c) dy
dx

= x2

y3 , given that y(0) = 1;

(d) d2x
dt2 + 5 dx

dt
+ 6x = 0, given that x(0) = 1 and ẋ(0) = 0;

(e) d2x
dt2 + 5 dx

dt
+ 6x = sin(t), given that x(0) = 1 and ẋ(0) = 0.

9. Carry out 100 iterations on the recurrence relation

xn+1 = 4xn(1 − xn),

given that (a) x0 = 0.2 and (b) x0 = 0.2001. List the final 10 iterates in each
case.



Recommended Textbooks 15

10. Type ?while to read the help page on the while command. Use a while loop to
program Euclid’s algorithm for finding the greatest common divisor of two
integers. Use your program to find the greatest common divisor of 12,348
and 14,238.

Recommended Textbooks
Note that Maple documentation comes with the package and is also available
through the Help pages. More Maple books are listed in the reference sections of
other chapters in the book.

[1] D. Richards, Advanced Mathematical Methods with Maple, 2nd ed., Cam-
bridge University Press, Cambridge, 2009.

[2] B. Barnes and G. R. Fulford, Mathematical Modelling with Case Studies: A
Differential Equations Approach using Maple and MATLAB, 2nd ed., Chap-
man and Hall, London, 2008.

[3] I. K. Shingareva and C. Lizárraga-Celaya, Maple and Mathematica: A Prob-
lem Solving Approach for Mathematics, Springer-Verlag, New York, 2007.

[4] M. L. Abell and J. P. Braselton, Maple By Example, 3rd ed., Academic Press,
New York, 2005.

[5] A. Heck, Introduction to Maple, 3rd ed., Springer-Verlag, New York, 2003.



1
Differential Equations

Aims and Objectives
• To review basic methods for solving some differential equations.

• To apply the theory to simple mathematical models.

• To introduce an existence and uniqueness theorem.

On completion of this chapter, the reader should be able to

• solve certain first- and second-order differential equations;

• apply the theory to chemical kinetics and electric circuits;

• interpret the solutions in physical terms;

• understand the existence and uniqueness theorem and its implications.

The basic theory of ordinary differential equations (ODEs) and analytical
methods for solving some types of ODEs are reviewed. This chapter is not intended
to be a comprehensive study on differential equations, but more an introduction to
the theory that will be used in later chapters. Most of the material will be covered in
first- and second-year undergraduate mathematics courses. The differential equa-
tions are applied to all kinds of models, but this chapter concentrates on chemical
kinetics and electric circuits in particular.

The chapter concludes with the existence and uniqueness theorem and some
analysis.

S. Lynch, Dynamical Systems with Applications using MapleTM  

© Birkhäuser  Boston, a part of Springer Science+Business Media, LLC 2010 
, DOI 10.1007/978-0-8176-4605-9_2,  
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1.1 Simple Differential Equations and Applications
Definition 1. A differential equation that involves only one independent variable
is called an ordinary differential equation (ODE). Those involving two or more
independent variables are called partial differential equations (PDEs). This chapter
will be concerned with ODEs only.

The subject of ODEs encompasses analytical, computational, and applicable
fields of interest. There are many textbooks written from the elementary to the
most advanced, with some focusing on applications and others concentrating on
existence theorems and rigorous methods of solution. This chapter is intended to
introduce the reader to all three branches of the subject.

Separable Differential Equations. Consider the differential equation

(1.1)
dx

dt
= f (t, x)

and suppose that the function f (t, x) can be factored into a product f (t, x) =
g(t)h(x), where g(t) is a function of t and h(x) is a function of x. If f can be
factored in this way, then (1.1) can be solved by the method of separation of
variables.

To solve the equation, divide both sides by h(x) to obtain

1

h(x)

dx

dt
= g(t);

integration with respect to t gives∫
1

h(x)

dx

dt
dt =

∫
g(t) dt.

Changing the variables in the integral gives∫
dx

h(x)
=

∫
g(t) dt.

An analytic solution to (1.1) can be found only if both integrals can be evaluated.
The method can be illustrated with some simple examples.

Example 1. Solve the differential equation dx
dt

= − t
x

.

Solution. The differential equation is separable. Separate the variables and inte-
grate both sides with respect to t . Therefore,∫

x
dx

dt
dt = −

∫
t dt,
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and so ∫
x dx = −

∫
t dt.

Integration of both sides yields

t2 + x2 = r2,

where r2 is a constant. There are an infinite number of solutions. The solution
curves are concentric circles of radius r centered at the origin. There are an infinite
number of solution curves that would fill the plane if they were all plotted. Three
such solution curves are plotted in Figure 1.1. Note that, throughout the book,
[Maple] in the figure caption indicates that the Maple commands for plotting the
figure may be found at the end of the corresponding chapter.

–3

–2

–1

1

2

3

x

–3 –2 –1 1 2 3t

Figure 1.1: [Maple] Three of an infinite number of solution curves for Example 1.

Example 2. Solve the differential equation dx
dt

= − t
x2 .

Solution. The differential equation is separable. Separate the variables and inte-
grate both sides with respect to t to give∫

x2 dx =
∫

t dt.

Integration of both sides yields

x3

3
= t2

2
+ C,

where C is a constant. Six of an infinite number of solution curves are plotted in
Figure 1.2.
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Figure 1.2: Six solution curves for Example 2.

Example 3. The population of a certain species of fish living in a large lake at
time t can be modeled using Verhulst’s equation, otherwise known as the logistic
equation,

dP

dt
= P(β − δP ),

where P(t) is the population of fish measured in tens of thousands and β and δ

are constants representing the birth and death rates of the fish living in the lake,
respectively. Suppose that β = 0.1, δ = 10−3, and the initial population is 50×104.
Solve this initial value problem and interpret the results in physical terms.

Solution. Using the methods of separation of variables gives∫
dP

P (β − δP )
=

∫
dt.

The solution to the integral on the left may be determined using partial fractions.
The general solution is

ln

∣∣∣∣ P

β − δP

∣∣∣∣ = βt + C,

or

P(t) = β

δ + kβe−βt
,

computed using Maple, where C and k are constants. Substituting the initial con-
ditions, the solution is

P(t) = 100

1 + e−0.1t
.
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Figure 1.3: The solution curve for the initial value problem in Example 3. Note
that the axes would be scaled by 104 in applications.

Thus, as time increases, the population of fish tends to a value of 100 × 104. The
solution curve is plotted in Figure 1.3.

Note the following:

• The quantity β
δ

is the ratio of births to deaths and is called the carrying
capacity of the environment.

• Take care when interpreting the solutions. This and similar continuous mod-
els only work for large species populations. The solutions give approximate
numbers. Even though time is continuous, the population size is not. For
example, you cannot have a fractional living fish, so population sizes have
to be rounded out to whole numbers in applications.

• Discrete models can also be applied to population dynamics (see Chapter 11).

Exact Differential Equations. A differential equation of the form

(1.2) M(t, x) + N(t, x)
dx

dt
= 0

is said to be exact if there exists a function, say, F(t, x), with continuous second
partial derivatives such that

∂F

∂t
= M(t, x) and

∂F

∂x
= N(t, x).
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Such a function exists as long as

∂M

∂x
= ∂N

∂t
,

and then the solution to (1.2) satisfies the equation

F(t, x) = C,

where C is a constant. Differentiate this equation with respect to t to obtain (1.2).

Example 4. Solve the differential equation

dx

dt
= 9 − 12t − 5x

5t + 2x − 4
.

Solution. In this case, M(t, x) = −9+12t +5x and N(t, x) = 5t +2x −4. Now

∂M

∂x
= ∂N

∂t
= 5

and integration gives the solution F(t, x) = x2 + 6t2 + 5tx − 9t − 4x = C. There
are an infinite number of solution curves, some of which are shown in Figure 1.4.
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Figure 1.4: Some solution curves for Example 4.
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Homogeneous Differential Equations. Consider differential equations of the
form

(1.3)
dx

dt
= f

(x

t

)
.

Substitute v = x
t

into (1.3) to obtain

d

dt
(vt) = f (v).

Therefore,

v + t
dv

dt
= f (v),

and so

dv

dt
= f (v) − v

t
,

which is separable. A complete solution can be found as long as the equations are
integrable, and then v may be replaced with x

t
.

Example 5. Solve the differential equation

dx

dt
= t − x

t + x
.

Solution. The equation may be rewritten as

(1.4)
dx

dt
= 1 − x

t

1 + x
t

.

Let v = x
t
. Then (1.4) becomes

dv

dt
= 1 − 2v − v2

t (1 + v)
.

This is a separable differential equation. The general solution is given by

x2 + 2tx − t2 = C,

where C is a constant. Some solution curves are plotted in Figure 1.5.
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Figure 1.5: Some solution curves for Example 5.

Linear Differential Equations. Consider differential equations of the form

(1.5)
dx

dt
+ P(t)x = Q(t).

Recall from elementary calculus that multiplying through by an integrating factor,
say, J (t), (1.5) becomes

(1.6) J
dx

dt
+ JPx = JQ.

Find J such that (1.6) can be written as

d

dt
(Jx) = J

dx

dt
+ x

dJ

dt
= JQ.

In order to achieve this, set

dJ

dt
= JP

and integrate to get

J (t) = exp

(∫
P(t) dt

)
.

Thus, the solution to system (1.5) may be found by solving the differential equation

d

dt
(Jx) = JQ,

as long as the right-hand side is integrable.
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Example 6. A chemical company pumps v liters (L) of solution containing mass
m grams (g) of solute into a large lake of volume V per day. The inflow and outflow
of the water is constant. Using the fact that the rate of change of concentration of
solute in the lake equals the rate at which solute enters minus the rate at which
it leaves, the concentration of solute in the lake, say, σ , satisfies the differential
equation

(1.7)
dσ

dt
+ v

V
σ = m

V
.

Determine the concentration of solute in the lake at time t assuming that σ = 0
when t = 0. What happens to the concentration in the long term?

Solution. This is a linear differential equation, and the integrating factor is given
by

J = exp

(∫
v

V
dt

)
= e

vt
V .

Multiply (1.7) by the integrating factor to obtain

d

dt

(
e

vt
V σ

)
= e

vt
V

m

V
.

Integration gives

σ(t) = m

v
− ke− vt

V ,

where k is a constant. Substituting the initial conditions, the final solution is

σ(t) = m

v

(
1 − e− vt

V

)
.

As t → ∞, the concentration settles to m
v

gl−1.

Series Solutions. Another very useful method for determining the solutions to
some ODEs is the series solution method. The basic idea is to seek a series solution
(assuming that the series converge) of the form

x(t) =
∞∑

n=0

an(t − t0)
n,

about the point t0. The method holds for infinitely differentiable functions (i.e.,
functions that can be differentiated as often as desired) and is outlined using two
simple examples.

Example 7. Determine a series solution to the initial value problem

(1.8)
dx

dt
+ tx = t3,

given that x(0) = 1.
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Solution. Given that t0 = 0, set x(t) = ∑∞
n=0 ant

n. Substituting into (1.8) gives

∞∑
n=1

nant
n−1 + t

( ∞∑
n=0

ant
n

)
= t3.

Combining the terms into a single series,

a1 +
∞∑

n=1

((n + 1)an+1 + an−1) tn = t3.

Equating coefficients gives

a1 = 0, 2a2 + a0 = 0, 3a3 + a1 = 0, 4a4 + a2 = 1, 5a5 + a3 = 0, . . .

and solving these equations gives a2n+1 = 0, for n = 0, 1, 2, . . . ,

a2 = −a0

2
, a4 = 1 − a2

4
,

and

a2n = −a2n−2

2n
,

where n = 3, 4, 5, . . . . Based on the assumption that x(t) = ∑∞
n=0 ant

n, substi-
tuting x(0) = 1 gives a0 = 1. Hence, the series solution to the ODE (1.8) is

x(t) = 1 − 1

2
t2 + 3

8
t4 +

∞∑
n=3

(−1)n
(

1

(2n)

1

(2n − 2)
. . .

1

6

3

8

)
t2n.

Note that the analytic solution can be found in this case and is equal to

x(t) = −2 + t2 + 3e− t2
2 ,

which is equivalent to the series solution above.

Example 8. Consider the van der Pol equation given by

(1.9)
d2x

dt2 + 2
(
x2 − 1

) dx

dt
+ x = 0,

where x(0) = 5 and ẋ(0) = 0. Use Maple to plot a numerical solution against a
series solution up to order 6 near the point x(0) = 5.

Solution. Using Maple, the series solution is computed to be

x(t) = 5 − 5

2
t2 + 40t3 − 11515

24
t4 + 9183

2
t5 + O(t6).

Figure 1.6 shows the truncated series and numerical solutions for the ODE (1.9)
near x(0) = 5. The Maple commands are listed at the end of the chapter. The
upper curve is the truncated series approximation that diverges quite quickly away
from the numerical solution. Of course, one must also take care that the numerical
solution is correct.
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Figure 1.6: [Maple] Numerical and truncated series solutions for the van der Pol
equation (1.9) near x(0) = 5.

1.2 Applications to Chemical Kinetics
Even the simplest chemical reactions can be highly complex and difficult to model.
Physical parameters such as temperature, pressure, and mixing, for example, are
ignored in this text, and differential equations are constructed that are dependent
only on the concentrations of the chemicals involved in the reaction. This is po-
tentially a very difficult subject and some assumptions have to be made to make
progress.

The Chemical Law of Mass Action. The rates at which the concentrations of the
various chemical species change with time are proportional to their concentrations.

Consider the simple chemical reaction

aA + bB → cC,

where a, b, and c are the stoichiometric coefficients, A and B are the reactants,
and C is the product. The rate of reaction, say, r , is given by

r = change in concentration

change in time
.

For this simple example,

r = −1

a

d[A]
dt

= −1

b

d[B]
dt

= 1

c

d[C]
dt

,

where [A], [B], and [C] represents the concentrations of A, B, and C, respectively.
Consider the following example, where one molecule of hydrogen reacts with

one molecule of oxygen to produce two molecules of hydroxyl (OH):

H2 + O2 → 2OH.
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Suppose that the concentration of hydrogen is [H2] and the concentration of oxygen
is [O2]. Then from the chemical law of mass action, the rate equation is given by

Rate = k[H2][O2],
where k is called the rate constant, and the reaction rate equation is

d[OH]
dt

= 2k[H2][O2].

Unfortunately, it is not possible to write down the reaction rate equations based
on the stoichiometric (balanced) chemical equations alone. There may be many
mechanisms involved in producing OH from hydrogen and oxygen in the above
example. Even simple chemical equations can involve a large number of steps and
different rate constants. Suppose in this text that the chemical equations give the
rate-determining steps.

Suppose that species A, B, C, and D have concentrations a(t), b(t), c(t), and
d(t) at time t and initial concentrations a0, b0, c0, and d0, respectively. Table 1.1
lists some reversible chemical reactions and one of the corresponding reaction rate
equations, where kf and kr are the forward and reverse rate constants, respectively.

Example 9. A reaction equation for sulfate and hydrogen ions to form bisulfite
ions is given by

SO2−
3 + H+ � HSO−

3 ,

where kf and kr are the forward and reverse rate constants, respectively. Denote
the concentrations by a = [SO2−

3 ], b = [H+], and c = [HSO−
3 ], and let the initial

concentrations be a0, b0, and c0. Assume that there is much more of species H+
than the other two species, so that its concentration b can be regarded as constant.
The reaction rate equation for c(t) is given by

dc

dt
= kf (a0 − c)b − kr(c0 + c).

Find a general solution for c(t).

Solution. The differential equation is separable and∫
dc

kf (a0 − c)b − kr(c0 + c)
=

∫
dt.

Integration yields

c(t) = kf a0b − krc0

kf b + kr

− krc0

kf b + kr

+ Ae(−kf a0−kr )t ,

where A is a constant.
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Table 1.1: One of the possible reaction rate equations for each chemical reaction.

Chemical reaction The reaction rate equation for one species
may be expressed as follows:

A+B → C
dc

dt
= kf ab = kf (a0 − c)(b0 − c)

2A � B
db

dt
= kf (a0 − 2b)2 − krb

A � 2B
db

dt
= kf

(
a0 − b

2

)
− krb

2

A � B+C
dc

dt
= kf (a0 − c) − kr(b0 + c)(c0 + c)

A+B � C
dc

dt
= kf (a0 − c)(b0 − c) − krc

A+B � C+D
dc

dt
= kf (a0 − c)(b0 − c) − kr(c0 + c)(d0 + c)

Example 10. The chemical equation for the reaction between nitrous oxide and
oxygen to form nitrogen dioxide at 25◦C,

2NO + O2 → 2NO2

obeys the law of mass action. The rate equation is given by

dc

dt
= k(a0 − c)2

(
b0 − c

2

)
,

where c = [NO2] is the concentration of nitrogen dioxide, k is the rate constant, a0
is the initial concentration of NO, and b0 is the initial concentration of O2. Find the
concentration of nitrogen dioxide after time t given that k = 0.00713 l2M−2s−1,
a0 = 4 Ml−1, b0 = 1 Ml−1, and c(0) = 0 Ml−1.

Solution. The differential equation is separable and∫
dc

(4 − c)2(1 − c/2)
=

∫
k dt.
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Integrating using partial fractions gives

kt = 1

c − 4
+ 1

2
ln |c − 4| − 1

2
ln |c − 2| + 1

4
− 1

2
ln 2.

It is not possible to obtain c(t) explicitly, so numerical methods are employed
using Maple. The concentration of nitrogen dioxide levels off at 2 Ml−1 as time
increases, as depicted in Figure 1.7.
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Figure 1.7: [Maple] The concentration of NO2 in moles per liter against time in
seconds.

Chemical reactions displaying periodic behavior will be dealt with in Chap-
ter 7. There may be a wide range of timescales involved in chemical reactions
and this can lead to stiff systems. Loosely speaking, a stiff system of differential
equations is one in which the velocity or magnitude of the vector field changes
rapidly in phase space. Examples are presented in Sections 0.3 and 7.6.

1.3 Applications to Electric Circuits
For many years, differential equations have been applied to model simple electrical
and electronic circuits. If an oscilloscope is connected to the circuit, then the results
from the analysis can be seen to match very well with what happens physically. As
a simple introduction to electric circuits, linear systems will be considered in this
chapter and the basic definitions and theory will be introduced.

Current and Voltage. The current I flowing through a conductor is proportional
to the number of positive charge carriers that pass a given point per second. The
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unit of current is the ampere A. A coulomb is defined to be the amount of charge
that flows through a cross section of wire in 1 second when a current of 1A is
flowing, so 1 amp is 1 coulomb per second. As the current passes through a circuit
element, the charge carriers exchange energy with the circuit elements, and there is
a voltage drop or potential difference measured in joules per coulomb, or volts V .

Consider simple electric circuits consisting of voltage sources, resistors, in-
ductors, and capacitors, or RLC circuits. A series RLC circuit is shown schemat-
ically in Figure 1.8. The voltage drop across a resistor and the current flowing
through it are related by Ohm’s Law.

L

C

R

E

Figure 1.8: Schematic of a simple RLC series circuit.

Ohm’s Law. The voltage drop V across a resistor is proportional to the current I

flowing through it:

V = IR,

where R is the resistance of the resistor measured in ohms (�).

A changing electric current can create a changing magnetic field that induces
a voltage drop across a circuit element, such as a coil.

Faraday’s Law. The voltage drop across an inductor is proportional to the rate of
change of the current:

V = L
dI

dt
,

where L is the inductance of the inductor measured in henries (H).

A capacitor consists of two plates insulated by some medium. When con-
nected to a voltage source, charges of opposite sign build up on the two plates, and
the total charge on the capacitor is given by

q(t) = q0 +
∫ t

t0

I (s) ds,
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where q0 is the initial charge.

Coulomb’s Law. The voltage drop across a capacitor is proportional to the charge
on the capacitor:

V (t) = 1

C
q(t) = 1

C

(
q0 +

∫ t

t0

I (s) ds

)
,

where C is the capacitance of the capacitor measured in farads (F ).

The physical laws governing electric circuits were derived by G. R. Kirchhoff
in 1859.

Kirchhoff’s Current Law. The algebraic sum of the currents flowing into any
junction of an electric circuit must be zero.

Kirchhoff’s Voltage Law. The algebraic sum of the voltage drops around any
closed loop in an electric circuit must be zero.

Applying Kirchhoff’s voltage law to the RLC circuit gives

VL + VR + VC = E(t),

where VR, VL, and VC are the voltage drops across R, L, and C, respectively, and
E(t) is the voltage source, or applied electromotive force (EMF). Substituting for
the voltages across the circuit components gives

L
dI

dt
+ RI + 1

C
q = E(t).

Since the current is the instantaneous rate of change in charge, I = dq
dt

, this equation
becomes

(1.10) L
d2q

dt2 + R
dq

dt
+ 1

C
q = E(t).

This differential equation is called a linear second-order differential equation.
It is linear because there are no powers of the derivatives, and second order because
the order of the highest occurring derivative is 2. This equation can be solved by the
method of Laplace transforms [7]; there are other methods available, and readers
should use whichever method with which they feel most comfortable. The theory
of Laplace transforms is covered in most Applied Mathematics and Engineering
undergraduate courses. The method of Laplace transforms can be broken down
into four distinct steps when finding the solution of a differential equation:

• rewrite (1.10) in terms of Laplace transforms;

• insert any given initial conditions;
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• rearrange the equation to give the transform of the solution;

• find the inverse transform.

The method is illustrated in the following examples.

Example 11. Consider a series resistor–inductor electrical circuit. Kirchhoff’s
voltage law gives

L
dI

dt
+ RI = E.

Given that L = 10 H; R = 2 �, and E = 50 sin(t) V, find an expression for the
current in the circuit if I (0) = 0.

Solution. Take Laplace transforms of both sides. Then

10(sĪ − I (0)) + 2Ī = 50

s2 + 1
.

Inserting the initial condition and rearranging,

Ī (5s + 1) = 25

s2 + 1
,

and splitting into partial fractions,

Ī = 25

26

1

s2 + 1
− 125

26

s

s2 + 1
+ 125

26

1

(s + 1/5)
.

Take inverse Laplace transforms to give

I (t) = 25

26
sin(t) − 125

26
cos(t) + 125

26
e− t

5 .

The periodic expression 25
26 sin(t) − 125

26 cos(t) is called the steady state, and the
term 125

26 e− t
5 is called the transient. Note that the transient decays to zero as t →

∞. Generally speaking, a system is in steady state if many of its properties are
unchanging in time and the transient can be thought of as a short-lived solution.

Example 12. Differentiate (1.10) with respect to time and substitute for dq
dt

to
obtain

L
d2I

dt2 + R
dI

dt
+ 1

C
I = dE

dt
.

The second-order differential equation for a certain RLC circuit is given by

d2I

dt2 + 5
dI

dt
+ 6I = 10 sin(t).

Solve this differential equation given that I (0) = İ (0) = 0 (a passive circuit).
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Solution. Take Laplace transforms of both sides:

(s2Ī − sI (0) − İ (0)) + 5(sĪ − I (0)) + 6Ī = 10

s2 + 1
.

Substitute the initial conditions to obtain

Ī (s2 + 5s + 6) = 10

s2 + 1
.

Splitting into partial fractions gives

Ī = 2

s + 2
− 1

s + 3
+ 1

s2 + 1
− s

s2 + 1
.

Take inverse transforms to get

I (t) = 2e−2t − e−3t + sin(t) − cos(t).

1.4 Existence and Uniqueness Theorem
For a more in-depth look in to existence and uniqueness theorems of ODEs, the
reader is directed to books such as [2].

Definition 2. A function f(x) with f : �n → �n is said to satisfy a Lipschitz
condition in a domain D ⊂ �n if there exists a constant, say, L, such that

‖ f(x1) − f(x2) ‖≤ L ‖ x1 − x2 ‖,
where x1, x2 ∈ D.

If the function f satisfies the Lipschitz condition, then it is said to be Lipschitz
continuous. Note that Lipschitz continuity in x implies continuity in x, but the
converse is not always true.

Existence and Uniqueness Theorem.. Suppose that f is continuously Lipschitz;
then for an initial point x0 ∈ D, the autonomous differential equation

(1.11)
dx
dt

= ẋ = f(x)

has a unique solution, say, φt (x0), that is defined on the maximal interval of exis-
tence.

Note that (1.11) is called autonomous as long as f is independent of t . The
proof of this theorem can be found in most textbooks that specialize in the theory
of ODEs. As far as the reader is concerned, this theorem implies that as long as f
is continuously differentiable (i.e., f ∈ C1(D)), then two distinct solutions cannot
intersect in finite time.

The following simple examples involving first-order ODEs illustrate the the-
orem quite well.
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Example 13. Solve the following linear differential equations and state the max-
imal interval of existence for each solution:

(a) ẋ = x, x(0) = 1;
(b) ẋ = x2, x(0) = 1;
(c) ẋ = 3x

2
3 , x(0) = 0.

Solutions.

(a) The solution to this elementary differential equation is x(t) = et , which is
unique and defined for all t . The maximal interval of existence in this case
is −∞ < t < ∞. Note that f (x) = x is continuously differentiable.

(b) The solution is given by

x(t) = 1

1 − t
,

which is not defined for t = 1. Therefore, there is a unique solution on the
maximal interval of existence given by −∞ < t < 1.

(c) The function f (x) = 3x
2
3 is not continuously differentiable and does not

satisfy the Lipschitz condition at x = 0; ∂f
∂x

= 2x− 1
3 is not continuous at

x = 0. Integration gives ∫
1

3
x− 2

3 dx =
∫

dt,

with general solution x(t) = t3+C. The solution to the initial value problem
is therefore x(t) = t3. The point x = 0 is zero when ẋ = 0. This means
that a solution starting at this point should stay there for all t . Thus, there
are two solutions starting at x0 = 0, namely φ1(t) = t3 and φ2(t) = 0. In
fact, there are infinitely many solutions starting at x0 = 0. In this case, there
exist solutions, but they are not unique.

Note that the solution would be unique on the maximal interval of existence
0 < t < ∞ if the initial condition were x(1) = 1.

Consider autonomous differential equations of the form

(1.12) ẋ = f(x),

where x ∈ �n.

Definition 3. A critical point (equilibrium point, fixed point, stationary point) is
a point that satisfies the equation ẋ = f(x) = 0. If a solution starts at this point, it
remains there forever.
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Definition 4. A critical point, say, x0, of the differential equation (1.12) is called
stable if given ε > 0, there is a δ > 0 such that for all t ≥ t0, ‖ x(t) − x0(t) ‖< ε,
whenever ‖ x(t0) − x0(t0) ‖< δ, where x(t) is a solution of (1.12).

A critical point that is not stable is called an unstable critical point.

Example 14. Find and classify the critical points for the following one-dimen-
sional differential equations:

(a) ẋ = x;
(b) ẋ = −x;
(c) ẋ = x2 − 1.

Solutions.

(a) There is one critical point at x0 = 0. If x < 0, then ẋ < 0, and if x > 0, then
ẋ > 0. Therefore, x0 is an unstable critical point. Solutions starting either
side of x0 are repelled away from it.

(b) There is one critical point at x0 = 0. If x < 0, then ẋ > 0, and if x > 0,
then ẋ < 0. Solutions starting either side of x0 are attracted toward it. The
critical point is stable.

(c) There are two critical points: one at x1 = −1 and the other at x2 = 1. If
x > 1, then ẋ > 0; if −1 < x < 1, then ẋ < 0; and if x < −1, then ẋ > 0.
Therefore, solutions starting near x1, but not on it, are attracted toward this
point, and x1 is a stable critical point. Solutions starting near x2 but not on
it move away from this point, and x2 is an unstable critical point.

By linearizing near a critical point, one can obtain a quantitative measure of
stability, as demonstrated below. Consider one-dimensional systems here; higher-
dimensional systems will be investigated in other chapters.

Linear StabilityAnalysis. Let x∗ be a critical point of ẋ = f (x), x ∈ �. Consider
a small perturbation, say, ξ(t), away from the critical point at x∗ to give x(t) =
x∗ + ξ(t). A simple analysis is now applied to determine whether the perturbation
grows or decays as time evolves. Now

ξ̇ = ẋ = f (x) = f (x∗ + ξ),

and after a Taylor series expansion,

ξ̇ = f (x∗) + ξf ′(x∗) + ξ2

2
f ′′(x∗) + · · · .

In order to apply a linear stability analysis, the nonlinear terms are ignored. Hence,

ξ̇ = ξf ′(x∗),
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since f (x∗) = 0. Therefore, the perturbation ξ(t) grows exponentially if f ′(x∗) >

0 and decays exponentially if f ′(x∗) < 0. If f ′(x∗) = 0, then higher-order deriva-
tives must be considered to determine the stability of the critical point.

A linear stability analysis is used extensively throughout the realms of non-
linear dynamics and will appear in other chapters of this book.

Example 15. Use a linear stability analysis to determine the stability of the critical
points for the following differential equations:

(a) ẋ = sin(x);
(b) ẋ = x2;
(c) ẋ = e−x − 1.

Solutions.

(a) There are critical points at xn = nπ , where n is an integer. When n is even,
f ′(xn) = 1 > 0, and these critical points are unstable. When n is odd,
f ′(xn) = −1 < 0, and these critical points are stable.

(b) There is one critical point at x0 = 0 and f ′(x) = 2x in this case. Now
f ′(0) = 0 and f ′′(0) = 2 > 0. Therefore, x0 is attracting when x < 0 and
repelling when x > 0. The critical point is called semistable.

(c) There is one critical point at x0 = 0. Now f ′(0) = −1 < 0, and therefore
the critical point at the origin is stable.

The theory of autonomous systems of ODEs in two dimensions will be dis-
cussed in the next chapter.

1.5 Maple Commands
For more information on solving differential equations using Maple, the reader
should type ?DEtools after the > prompt. Readers may also be interested in the
PDEtools package used for finding analytical solutions for PDEs.

> # Program 1a: See Figure 1.1.

> # Example 1: A separable ODE.

> restart:with(DEtools):with(plots):

> deqn1:=diff(y(x),x)=-x/y(x):

> dsolve(deqn1,y(x));C1:=xˆ2+yˆ2:

> implicitplot({C1=1,C1=4,C1=9},x=-4..4,y=-4..4,numpoints=1000,color=blue,

scaling=CONSTRAINED,font=[TIMES,ROMAN,15],labels=[‘t‘,‘x‘]);
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> # Program 1b

> # Example 3: Solving a separable ODE.

> deqn2:=diff(P(t),t)=P(t)*(100-P(t))/1000:

> dsolve({deqn2,P(0)=50},P(t));

> dsolve({deqn2,P(0)=150},P(t));

> # Program 1c

> # Example 7: Series solution.

> LDE:=diff(x(t),t)+t*x(t)=tˆ3:

> dsolve({LDE,x(0)=1},x(t));

> seriessolLDE:=dsolve({LDE,x(0)=1},x(t),series);

> # Program 1d: See Figure 1.6.

> # Example 8: Series solution of the van der Pol equation.

> vanderPol:=diff(x(t),t,t)+2*(x(t)ˆ2-1)*diff(x(t),t)+x(t)=0;

> numsol:=dsolve({vanderPol,x(0)=5,D(x)(0)=0},numeric,range=0..0.08):

> p1:=odeplot(numsol):

> seriessol:=dsolve({vanderPol,x(0)=5,D(x)(0)=0},x(t),series);

> approxpoly:=convert(rhs(seriessol),polynom);

> p2:=plot({approxpoly},t=0..0.08,colour=blue):

> display({p1,p2},font=[TIMES,ROMAN,15],

title=["Numerical and Series Solutions"]);

> # Program 1e: See Figure 1.7.

> # Example 9. Chemical kinetics.

> a:=4:b:=1:k:=0.00713:

> deqn3:=diff(c(t),t)=k*(a-c(t))ˆ2*(b-c(t)/2):

> dsolve(deqn3,c(t));

> # Plot a solution curve.

> DEplot(deqn3,c(t),t=0..400,[[c(0)=0]],stepsize=0.01,c=0..2.5,

linecolor=black,font=[TIMES,ROMAN,15]);

> # Program 1f: Solving ODEs.

> # Example 12: A second order ODE.

> deqn4:=diff(i(t),t,t)+5*diff(i(t),t)+6*i(t)-10*sin(t):

> dsolve( {deqn4, i(0)=0, D(i)(0)=0}, i(t));

>

> # Exercise 7. A system of three ODEs.

> sys1:=diff(x(t),t)=-alpha*x(t),diff(y(t),t)=alpha*x(t)-beta*y(t),

diff(z(t),t)=beta*y(t);

> dsolve({sys1},{x(t),y(t),z(t)});

1.6 Exercises
1. Sketch some solution curves for the following differential equations:
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(a) dy
dx

= − y
x
;

(b) dy
dx

= 2y
x

;
(c) dy

dx
= y

2x
;

(d) dy
dx

= y2

x
;

(e) dy
dx

= − xy

x2+y2 ;
(f) dy

dx
= y

x2 .

2. Fossils are often dated using the differential equation

dA

dt
= −αA,

where A is the amount of radioactive substance remaining, α is a constant,
and t is measured in years. Assuming that α = 1.5×10−7, determine the age
of a fossil containing radioactive substance A if only 30% of the substance
remains.

3. Write down the chemical reaction rate equations for the reversible reaction
equations

(a) A + B + C � D,

(b) A + A + A � A3,

given that the forward rate constant is kf and the reverse rate constant is kr

in each case. Assume that the chemical equations are the rate-determining
steps.

4. (a) Consider a series resistor–inductor circuit with L = 2 H, R = 10 �

and an applied EMF of E = 100 sin(t). Use an integrating factor to
solve the differential equation, and find the current in the circuit after
0.2 s given that I (0) = 0.

(b) The differential equation used to model a series resistor–capacitor cir-
cuit is given by

R
dQ

dt
+ Q

C
= E,

where Q is the charge across the capacitor. If a variable resistance
R = 1/(5 + t) � and a capacitance C = 0.5 F are connected in series
with an applied EMF, E = 100V, find the charge on the capacitor
given that Q(0) = 0.
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5. (a) A forensic scientist is called to the scene of a murder. The temperature
of the corpse is found to be 75◦F and one hour later the temperature has
dropped to 70◦F. If the temperature of the room in which the body was
discovered is a constant 68◦F, how long before the first temperature
reading was taken did the murder occur? Assume that the body obeys
Newton’s law of cooling,

dT

dt
= β(T − TR),

where T is the temperature of the corpse, β is a constant, and TR is the
room temperature.

(b) The differential equation used to model the concentration of glucose
in the blood, say, g(t), when it is being fed intravenously into the body
is given by

dg

dt
+ kg = G

100V
,

where k is a constant, G is the rate at which glucose is admitted, and
V is the volume of blood in the body. Solve the differential equation
and discuss the results.

6. Show that the series solution of the Airy equation

d2x

dt2 − tx = 0,

where x(0) = a0 and ẋ(0) = a1, used in physics to model the defraction of
light, is given by

x(t) = a0

(
1 +

∞∑
1

(
t3k

(2.3)(5.6) · · · ((3k − 1)(3k))

))

+ a1

(
t +

∞∑
1

(
t3k+1

(3.4)(6.7) · · · ((3k)(3k + 1))

))
.

7. A chemical substance A changes into substance B at a rate α times the amount
of A present. Substance B changes into C at a rate β times the amount of B

present. If initially only substance A is present and its amount is M , show
that the amount of C present at time t is

M + M

(
βe−αt − αe−βt

α − β

)
.
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8. Two tanks A and B, each of volume V , are filled with water at time t = 0.
For t > 0, volume v of solution containing mass m of solute flows into tank
A per second; mixture flows from tank A to tank B at the same rate and
mixture flows away from tank B at the same rate. The differential equations
used to model this system are given by

dσA

dt
+ v

V
σA = m

V
,

dσB

dt
+ v

V
σB = v

V
σA,

where σA,B are the concentrations of solute in tanks A and B, respectively.
Show that the mass of solute in tank B is given by

mV

v

(
1 − e−vt/V

)
− mte−vt/V .

9. In an epidemic, the rate at which healthy people become infected is a times
their number; the rates of recovery and death are respectively b and c times
the number of infected people. If initially there are N healthy people and no
sick people, find the number of deaths up to time t . Is this a realistic model?
What other factors should be taken into account?

10. (a) Determine the maximal interval of existence for each of the following
initial value problems:

i. ẋ = x4, x(0) = 1;

ii. ẋ = x2−1
2 , x(0) = 2;

iii. ẋ = x(x − 2), x(0) = 3.

(b) For what values of t0 and x0 does the initial value problem

ẋ = 2
√

x, x(t0) = x0,

have a unique solution?
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2
Planar Systems

Aims and Objectives
• To introduce the theory of planar autonomous linear differential equations.

• To extend the theory of linear systems to that of nonlinear systems.

On completion of this chapter, the reader should be able to

• find and classify critical points in the plane;

• carry out simple linear transformations;

• construct phase plane diagrams using isoclines, vector fields, and eigenvec-
tors;

• apply the theory to simple modeling problems.

Basic analytical methods for solving two-dimensional linear autonomous
differential equations are reviewed and simple phase portraits are constructed in
the plane.

The method of linearization is introduced and both hyperbolic and nonhy-
perbolic critical points are defined. Phase portraits are constructed using Hart-
man’s theorem. The linearization technique used here is based on a linear stability
analysis.

S. Lynch, Dynamical Systems with Applications using MapleTM  
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2.1 Canonical Forms
Consider linear two-dimensional autonomous systems of the form

dx

dt
= ẋ = a11x + a12y,

dy

dt
= ẏ = a21x + a22y,(2.1)

where the aij are constants. The system is linear, as the terms in x, y, ẋ, and ẏ are
all linear. System (2.1) can be written in the equivalent matrix form as

(2.2) ẋ = Ax,

where x ∈ �2 and

A =
(

a11 a12
a21 a22

)
.

Definition 1. Every solution of (2.1) and (2.2), say, φ(t) = (x(t), y(t)), can be
represented as a curve in the plane. The solution curves are called trajectories or
orbits.

The existence and uniqueness theorem guarantees that trajectories do not
cross. Note that there are an infinite number of trajectories that would fill the plane
if they were all plotted. However, the qualitative behavior can be determined
by plotting just a few of the trajectories given the appropriate number of initial
conditions.

Definition 2. The phase portrait is a two-dimensional figure showing how the
qualitative behavior of system (2.1) is determined as x and y vary with t .

With the appropriate number of trajectories plotted, it should be possible to
determine where any trajectory will end up from any given initial condition.

Definition 3. The direction field or vector field gives the gradients dy
dx

and direction
vectors of the trajectories in the phase plane.

The slope of the trajectories can be determined using the chain rule,

dy

dx
= ẏ

ẋ
,

and the direction of the vector field is given by ẋ and ẏ at each point in the xy plane.

Definition 4. The contour lines for which dy
dx

is a constant are called isoclines.

Isoclines may be used to help with the construction of the phase portrait. For
example, the isoclines for which ẋ = 0 and ẏ = 0 are used to determine where
the trajectories have vertical and horizontal tangent lines, respectively. If ẋ = 0,
then there is no motion horizontally, and trajectories are either stationary or move
vertically. A similar argument is used when ẏ = 0.
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Using linear algebra, the phase portrait of any linear system of the form
(2.2) can be transformed to a so-called canonical form ẏ = Jy by applying a
transformation x = P y, where P is to be determined and J = P −1AP is of one
of the following forms:

J1 =
(

λ1 0
0 λ2

)
, J2 =

(
α β

−β α

)
,

J3 =
(

λ1 0
0 λ1

)
, J4 =

(
λ1 µ

0 λ1

)
,

where λ1,2, α, β, and µ are real constants. Matrix J1 has two real distinct eigen-
values, matrix J2 has complex eigenvalues, and matrices J3 and J4 have repeated
eigenvalues. The qualitative type of phase portrait is determined from each of these
canonical forms.

Nonsimple Canonical Systems. The linear system (2.2) is nonsimple if the matrix
A is singular (i.e., det(A) = 0, and at least one of the eigenvalues is zero). The
system then has critical points other than the origin.

Example 1. Sketch a phase portrait of the system ẋ = x, ẏ = 0.

Solution. The critical points are found by solving the equation ẋ = ẏ = 0, which
has the solution x = 0. Thus, there are an infinite number of critical points lying
along the y-axis. The direction field has the gradient given by

dy

dx
= ẏ

ẋ
= 0

x
= 0

for x 
= 0. This implies that the direction field is horizontal for points not on the
y-axis. The direction vectors may be determined from the equation ẋ = x since if
x > 0, then ẋ > 0, and the trajectories move from left to right; if x < 0, then ẋ < 0,
and trajectories move from right to left. A phase portrait is plotted in Figure 2.1.

Simple Canonical Systems. System (2.2) is simple if det(A) 
= 0, and the the
origin is then the only critical point. The critical points may be classified depending
on the type of eigenvalues.

2.1.I Real Distinct Eigenvalues. Suppose that system (2.2) can be diagonalized
to obtain

ẋ = λ1x, ẏ = λ2y.

The solutions to this system are x(t) = C1e
λ1t and y(t) = C2e

λ2t , where C1
and C2 are constant. The solution curves may be found by solving the differential
equation given by

dy

dx
= ẏ

ẋ
= λ2y

λ1x
,
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Figure 2.1: Six trajectories and a vector field plot for Example 1. Note that there
are an infinite number of critical points lying on the y-axis.

which is integrable. The solution curves are given by |y|λ1 = K|x|λ2 . The type of
phase portrait depends on the values of λ1 and λ2, as summarized:

• If the eigenvalues are distinct, real, and positive, then the critical point is
called an unstable node.

• If the eigenvalues are distinct, real, and negative, then the critical point is
called a stable node.

• If one eigenvalue is positive and the other negative, then the critical point is
called a saddle point or col.

Possible phase portraits for these canonical systems along with vector fields su-
perimposed are shown in Figure 2.2.

2.1.II Complex Eigenvalues (λ = α ± iβ). Consider a canonical system of the
form

(2.3) ẋ = αx + βy, ẏ = −βx + αy.

Convert to polar coordinates by making the transformations x = r cos θ and
y = r sin θ . Then elementary calculus gives

rṙ = xẋ + yẏ, r2θ̇ = xẏ − yẋ.
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Figure 2.2: Possible phase portraits for canonical systems with two real distinct
eigenvalues: (a) unstable node; (b) stable node; (c) saddle point or col.

System (2.3) becomes

ṙ = αr, θ̇ = −β.

The type of phase portrait depends on the values of α and β:

• If α > 0, then the critical point is called an unstable focus.

• If α = 0, then the critical point is called a center.

• If α < 0, then the critical point is called a stable focus.

• If θ̇ > 0, then the trajectories spiral counterclockwise around the origin.

• If θ̇ < 0, then the trajectories spiral clockwise around the origin.

Phase portraits of the canonical systems with the vector fields superimposed are
shown in Figure 2.3.

2.1.III Repeated Real Eigenvalues. Suppose that the canonical matrices are of
the form J3 or J4. The type of phase portrait is determined by the following:

• If there are two linearly independent eigenvectors, then the critical point is
called a singular node.

• If there is one linearly independent eigenvector, then the critical point is
called a degenerate node.

Possible phase portraits with vector fields superimposed are shown in Figure 2.4.
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Figure 2.3: Possible phase portraits for canonical systems with complex eigenval-
ues: (a) unstable focus; (b) stable focus; (c) center.

The classifications given in this section may be summarized using the trace
and determinant of the matrix A as defined in system (2.2). If the eigenvalues are
λ1,2, then the characteristic equation is given by (λ − λ1)(λ − λ2) = λ2 − (λ1 +
λ2)λ + λ1λ2 = λ2 − trace(A)λ + det(A) = 0. Therefore,

λ1,2 = trace(A) ± √
(trace(A))2 − 4det(A)

2
.

The summary is depicted in Figure 2.5.

2.2 Eigenvectors Defining Stable and Unstable
Manifolds

Consider Figure 2.5. Apart from the region T 2 − 4D > 0, where the trajectories
spiral, the phase portraits of the canonical forms of (2.2) all contain straight-line
trajectories that remain on the coordinate axes forever and exhibit exponential
growth or decay along it. These special trajectories are determined by the eigen-
vectors of the matrix A and are called the manifolds. If the trajectories move toward
the critical point at the origin as t → ∞ along the axis, then there is exponential
decay and the axis is called a stable manifold. If trajectories move away from the
critical point as t → ∞, then the axis is called an unstable manifold.

In the general case, the manifolds do not lie along the axes. Suppose that a
trajectory is of the form

x(t) = exp(λt)e,

where e 
= 0 is a vector and λ is a constant. This trajectory satisfies (2.2) since it
is a solution curve. Therefore, substituting into (2.2),

λ exp(λt)e = exp(λt)Ae
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Figure 2.4: Possible phase portraits for canonical systems with repeated eigenval-
ues: (a) a stable singular node; (b) an unstable degenerate node.
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Figure 2.5: Classification of critical points for system (2.2). The parabola has
equation T 2 − 4D = 0, where D = det(A) and T = trace(A).
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or

λe = Ae.

From elementary linear algebra, if there exists a nonzero column vector e satisfying
this equation, then λ is called an eigenvalue of A and e is called an eigenvector
of A corresponding to the eigenvalue λ. If λ is negative, then the corresponding
eigenvector gives the direction of the stable manifold, and if λ is positive, then the
eigenvector gives the direction of the unstable manifold.

When λ1 
= λ2, it is known from elementary linear algebra that the eigenvec-
tors e1 and e2, corresponding to the eigenvalues λ1 and λ2, are linearly independent.
Therefore, the general solution to the differential equations given by (2.1) is given
by

x(t) = C1 exp(λ1t)e1 + C2 exp(λ2t)e2,

where C1 and C2 are constants. In fact, for any given initial condition, this solution
is unique by the existence and uniqueness theorem.

Definition 5. Suppose that 0 ∈ �2 is a critical point of the linear system (2.2).
Then the stable and unstable manifolds of the critical point 0 are denoted by ES(0)

and EU(0), respectively, and are determined by the eigenvectors of the critical
point at 0.

Consider the following two simple illustrations.

Example 2. Determine the stable and unstable manifolds for the linear system

ẋ = 2x + y, ẏ = x + 2y.

Solution. The system can be written as ẋ = Ax, where

A =
(

2 1
1 2

)
.

The characteristic equation for matrix A is given by det(A − λI) = 0, or in this
case, ∣∣∣∣ 2 − λ 1

1 2 − λ

∣∣∣∣ = 0.

Therefore, the characteristic equation is λ2 − 4λ + 3 = 0, which has roots λ1 = 1
and λ2 = 3. Since both eigenvalues are real and positive, the critical point at the
origin is an unstable node. The manifolds are determined from the eigenvectors
corresponding to these eigenvalues. The eigenvector for λ1 is e1 = (1, −1)T and
the eigenvector for λ2 is e2 = (1, 1)T , where T represents the transpose matrix.
The manifolds are shown in Figure 2.6.

For the sake of completeness, the general solution in this case is given by

x(t) = C1 exp(t)(1, −1)T + C2 exp(3t)(1, 1)T .
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Figure 2.6: The two unstable manifolds, defined by the eigenvectors e1 and e2, for
Example 2.

Example 3. Determine the stable and unstable manifolds for the linear system

ẋ =
( −3 4

−2 3

)
x.

Solution. The characteristic equation for matrix A is given by

∣∣∣∣ −3 − λ 4
−2 3 − λ

∣∣∣∣ = 0.

Therefore, the characteristic equation is λ2 − 1 = 0, which has roots λ1 = 1 and
λ2 = −1. Since one eigenvalue is real and positive and the other is real and negative,
the critical point at the origin is a saddle point. The manifolds are derived from the
eigenvectors corresponding to these eigenvalues. The eigenvector for λ1 is (1, 1)T

and the eigenvector for λ2 is (2, 1)T . The manifolds are shown in Figure 2.7.

y

2

1

x21

Figure 2.7: The stable and unstable manifolds for Example 3. The trajectories
lying on the stable manifold tend to the origin as t → ∞ but never reach it.
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For the sake of completeness, the general solution in this case is given by

x(t) = C1 exp(t)(1, 1)T + C2 exp(−t)(2, 1)T .

Notation. The stable and unstable manifolds of linear systems will be denoted by
ES and EU , respectively. Center manifolds (where the eigenvalues have zero real
part) will be discussed in Chapter 7.

2.3 Phase Portraits of Linear Systems in the Plane
Definition 6. Two systems of first-order autonomous differential equations are said
to be qualitatively (or topologically) equivalent if there exists an invertible mapping
that maps one phase portrait onto the other while preserving the orientation of the
trajectories.

Phase portraits can be constructed using isoclines, vector fields, and eigen-
vectors (for real eigenvalues).

Example 4. Consider the system

ẋ =
(

2 1
1 2

)
x.

Find (a) the eigenvalues and corresponding eigenvectors of A, (b) a nonsingular
matrix P such that J = P −1AP is diagonal, (c) new coordinates (u, v) such that
substituting x = x(u, v), y = y(u, v), converts the linear dynamical system

ẋ = 2x + y, ẏ = x + 2y, into u̇ = λ1u, v̇ = λ2v

for suitable λ1 and λ2, (d) sketch phase portraits for these qualitatively equivalent
systems.

Solutions. The origin is a unique critical point.

(a) From Example 2, the eigenvalues and corresponding eigenvectors are given
by λ1 = 1, (1, −1)T , and λ2 = 3, (1, 1)T ; the critical point is an unstable
node.

(b) Using elementary linear algebra, the columns of matrix P are these eigen-
vectors and so

P =
(

1 1
−1 1

)
and

J = P −1AP =
(

1 0
0 3

)
.
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(c) Take the linear transformation x = P u to obtain the system u̇ = u, v̇ = 3v.

(d) Consider the isoclines. In the xy plane, the flow is horizontal on the line
where ẏ = 0 and, hence, on the line y = −x/2. On this line, ẋ = 3x/2;
thus, ẋ > 0 if x > 0 and ẋ < 0 if x < 0. The flow is vertical on the line
y = −2x. On this line, ẏ < 0 if x > 0 and ẏ > 0 if x < 0.

Vector fields: The directions of the vector fields can be determined from ẋ

and ẏ at points (x, y) in the plane.
Consider the slope of the trajectories. If x + 2y > 0 and 2x + y > 0, then

dy
dx

> 0; if x+2y < 0 and 2x+y > 0, then dy
dx

< 0; if x+2y > 0 and 2x+y < 0,

then dy
dx

< 0; and if x + 2y < 0 and 2x + y < 0, then dy
dx

> 0.
Manifolds: From the eigenvectors, both manifolds are unstable. One passes

through (0, 0) and (1, 1) and the other through (0, 0) and (1, −1).
Putting all of this information together gives the phase portrait in Figure

2.8(a). The canonical phase portrait is shown in Figure 2.8(b).
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Figure 2.8: [Maple] Qualitatively equivalent phase portraits for Example 4.

Example 5. Sketch a phase portrait for the system

ẋ = −x − y, ẏ = x − y.
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Solution. The origin is the only critical point. The characteristic equation is given
by

|A − λI | = λ2 + 2λ + 2 = 0,

which has complex solutions λ1,2 = −1 ± i. The critical point at the origin is a
stable focus.

Consider the isoclines. In the xy plane, the flow is horizontal on the line
where ẏ = 0 and, hence, on the line y = x. On this line, ẋ = −2x; thus, ẋ < 0 if
x > 0 and ẋ > 0 if x < 0. The flow is vertical on the line where ẋ = 0 and, hence,
on the line y = −x. On this line, ẏ < 0 if x > 0 and ẏ > 0 if x < 0.

Vector fields: The directions of the vector fields can be determined from ẋ

and ẏ at points (x, y) in the plane.
Consider the slope of the trajectories. If y > x and y > −x, then dy

dx
> 0;

if y > x and y < −x, then dy
dx

< 0; if y < x and y > −x, then dy
dx

< 0; and if

y < x and y < −x, then dy
dx

> 0.
Manifolds: The eigenvectors are complex and there are no real manifolds.
Converting to polar coordinates gives ṙ = −r , θ̇ = 1. Putting all of this

information together gives the phase portrait in Figure 2.9.
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Figure 2.9: Some trajectories for Example 5. The critical point is a stable focus.

Example 6. Sketch a phase portrait for the system

ẋ = −2x, ẏ = −4x − 2y.
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Solution. The origin is the only critical point. The characteristic equation is given
by

|A − λI | = λ2 − 4λ + 4 = 0,

which has repeated roots λ1,2 = −2.
Consider the isoclines. In the xy plane, the flow is horizontal on the line

where ẏ = 0 and hence on the line y = −2x. Trajectories which start on the y-axis
remain there forever.

Vector fields: The directions of the vector fields can be determined from ẋ

and ẏ at points (x, y) in the plane.
Consider the slope of the trajectories. The slopes are given by dy

dx
at each

point (x, y) in the plane.
Manifolds: There is one linearly independent eigenvector, (0, 1)T . Therefore,

the critical point is a stable degenerate node. The stable manifold ES , is the y-axis.
Putting all of this together gives the phase portrait in Figure 2.10.
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Figure 2.10: Some trajectories for Example 6. The critical point is a stable degen-
erate node.

Phase portraits of nonlinear planar autonomous systems will be considered
in the following sections, where stable and unstable manifolds do not necessarily
lie on straight lines. However, all is not lost, as the manifolds for certain critical
points are tangent to the eigenvectors of the linearized system at that point.

Manifolds in three-dimensional systems will be discussed in Chapter 7.
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2.4 Linearization and Hartman’s Theorem
Suppose that the nonlinear autonomous system

ẋ = P(x, y), ẏ = Q(x, y)(2.4)

has a critical point at (u, v), where P and Q are at least quadratic in x and y. Take
a linear transformation which moves the critical point to the origin. Let X = x −u

and Y = y − v. Then system (2.4) becomes

Ẋ = P(X + u, Y + v) = P(u, v) + X
∂P

∂x

∣∣∣∣
x=u,y=v

+ Y
∂P

∂y

∣∣∣∣
x=u,y=v

+ R(X, Y ),

Ẏ = Q(X + u, Y + v) = Q(u, v) + X
∂Q

∂x

∣∣∣∣
x=u,y=v

+ Y
∂Q

∂y

∣∣∣∣
x=u,y=v

+ S(X, Y )

after a Taylor series expansion. The nonlinear terms R and S satisfy the conditions
R
r

→ 0 and S
r

→ 0 as r = √
X2 + Y 2 → 0. The functions R and S are said to be

“big Oh of r2,” or in mathematical notation, R = O(r2) and S = O(r2). Discard
the nonlinear terms in the system and note that P(u, v) = Q(u, v) = 0 since (u, v)

is a critical point of system (2.4). The linearized system is then of the form

Ẋ = X
∂P

∂x

∣∣∣∣
x=u,y=v

+ Y
∂P

∂y

∣∣∣∣
x=u,y=v

,

Ẏ = X
∂Q

∂x

∣∣∣∣
x=u,y=v

+ Y
∂Q

∂y

∣∣∣∣
x=u,y=v

(2.5)

and the Jacobian matrix is given by

J (u, v) =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠
∣∣∣∣∣∣
x=u,y=v

.

Definition 7. A critical point is called hyperbolic if the real part of the eigen-
values of the Jacobian matrix J (u, v) are nonzero. If the real part of either of
the eigenvalues of the Jacobian are equal to zero, then the critical point is called
nonhyperbolic.

Hartman’s Theorem. Suppose that (u, v) is a hyperbolic critical point of system
(2.4). Then there is a neighborhood of this critical point on which the phase portrait
for the nonlinear system resembles that of the linearized system (2.5). In other
words, there is a curvilinear continuous change of coordinates taking one phase
portrait to the other, and in a small region around the critical point, the portraits
are qualitatively equivalent.

A proof to this theorem may be found in Hartman’s book [8]. Note that
the stable and unstable manifolds of the nonlinear system will be tangent to the
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manifolds of the linearized system near the relevant critical point. These trajectories
diverge as one moves away from the critical point; this is illustrated in Examples
7 and 8.

Notation. Stable and unstable manifolds of a nonlinear system are labeled WS and
WU , respectively.

Hartman’s theorem implies that WS and WU are tangent to ES and EU at the
relevant critical point. If any of the critical points are nonhyperbolic, then other
methods must be used to sketch a phase portrait, and numerical solvers may be
required.

2.5 Constructing Phase Plane Diagrams
The method for plotting phase portraits for nonlinear planar systems having hy-
perbolic critical points may be broken down into three distinct steps:

• Locate all of the critical points.

• Linearize and classify each critical point according to Hartman’s theorem.

• Determine the isoclines and use dy
dx

to obtain slopes of trajectories.

The method can be illustrated with some simple examples. Examples 10–12 illus-
trate possible approaches when a critical point is not hyperbolic.

Example 7. Sketch a phase portrait for the nonlinear system

ẋ = x, ẏ = x2 + y2 − 1.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0. Hence,
ẋ = 0 if x = 0 and ẏ = 0 if x2 + y2 = 1. If x = 0, then ẏ = 0 if y2 = 1, which
has solutions y = 1 and y = −1. Therefore, there are two critical points: (0, 1)

and (0, −1).
Linearize by finding the Jacobian matrix; hence,

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ =

(
1 0

2x 2y

)
.

Linearize at each critical point; hence,

J(0,1) =
(

1 0
0 2

)
.

The matrix is in diagonal form. There are two distinct positive eigenvalues; hence,
the critical point is an unstable node.
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For the other critical point,

J(0,−1) =
(

1 0
0 −2

)
.

There is one positive and one negative eigenvalue, and so this critical point is a
saddle point or col.

Note that the matrices J(0,1) and J(0,−1) are in diagonal form. The eigenvec-
tors for both critical points are (1, 0)T and (0, 1)T . Thus, in a small neighborhood
around each critical point, the stable and unstable manifolds are tangent to the lines
generated by the eigenvectors through each critical point. Therefore, near each crit-
ical point, the manifolds are horizontal and vertical. Note that the manifolds of the
nonlinear system WS and WU need not be straight lines but are tangent to ES and
EU at the relevant critical point.

Consider the isoclines. Now ẋ = 0 on x = 0, and on this line, ẏ = y2 − 1.
Thus, if |y| < 1, then ẏ < 0, and if |y| > 1, then ẏ > 0. Also, ẏ = 0 on the circle
x2 + y2 = 1, and on this curve, ẋ = x. Thus, if x > 0, then ẋ > 0, and if x < 0,
then ẋ < 0. The slope of the trajectories is given by

dy

dx
= x2 + y2 − 1

x
.

Putting all of this information together gives a phase portrait as depicted in Fig-
ure 2.11.

Example 8. Sketch a phase portrait for the nonlinear system

ẋ = y, ẏ = x(1 − x2) + y.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0. Hence,
ẋ = 0 if y = 0 and ẏ = 0 if x(1 − x2) + y = 0. If y = 0, then ẏ = 0 if
x(1 − x2) = 0, which has solutions x = 0, x = 1, and x = −1. Therefore, there
are three critical points: (0, 0), (1, 0), and (−1, 0).

Linearize by finding the Jacobian matrix; hence,

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ =

(
0 1

1 − 3x2 1

)
.

Linearize at each critical point; hence,

J(0,0) =
(

0 1
1 1

)
.

The eigenvalues are

λ1 = 1 + √
5

2
and λ2 = 1 − √

5

2
.
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Figure 2.11: A phase portrait for Example 7. The stable and unstable manifolds
(WS , WU ) are tangent to horizontal or vertical lines (ES , EU ) in a small neighbor-
hood of each critical point.

The corresponding eigenvectors are (1 λ1)
T and (1 λ2)

T . Thus, the critical point
at the origin is a saddle point or col.

For the other critical points,

J(1,0) = J(−1,0) =
(

0 1
−2 1

)
.

The eigenvalues are

λ = 1 ± i
√

7

2
,

and so both critical points are unstable foci.
Consider the isoclines. Now ẋ = 0 on y = 0, and on this line, ẏ = x(1−x2).

Thus, if 0 < x < 1, then ẏ > 0; if x > 1, then ẏ < 0; if −1 < x < 0, then ẏ < 0;
and if x < −1, then ẏ > 0. Also, ẏ = 0 on the curve y = x − x3, and on this
curve, ẋ = y. Thus, if y > 0, then ẋ > 0, and if y < 0, then ẋ < 0. The slope of
the trajectories is given by

dy

dx
= x − x3 + y

y
.

Note that on x = 0 and x = ±1, dy
dx

= 1. Putting all of this information together
gives a phase portrait as depicted in Figure 2.12.
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Example 9. Plot a phase portrait for the system

ẋ = x
(

1 − x

2
− y

)
, ẏ = y

(
x − 1 − y

2

)
.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0. Hence,
ẋ = 0 if either x = 0 or y = 1 − x

2 . Suppose that x = 0. Then ẏ = 0 if
y
(−1 − y

2

) = 0, which has solutions y = 0 or y = −2. Suppose that y = 1 − x
2 .

Then ẏ = 0 if either 1 − x
2 = 0 or 1 − x

2 = 2x − 2, which has solutions x = 2
or x = 6

5 . Thus, there are four critical points at (0, 0), (2, 0), (0, −2), and
( 6

5 , 2
5

)
.

Notice that ẋ = 0 when x = 0, which means that the flow is vertical on the y-axis.
Similarly, ẏ = 0 when y = 0, and the flow is horizontal along the x-axis. In this
case, the axes are invariant.
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Figure 2.12: [Maple]A phase portrait for Example 8. Note that in a small neighbor-
hood of the origin, the unstable manifold (WU ) is tangent to the line EU given by
y = λ1x and the stable manifold (WS) is tangent to the line ES given by y = λ2x.

Linearize by finding the Jacobian matrix; hence,

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ =

(
1 − x − y −x

y x − 1 − y

)
.

Linearize around each of the critical points and apply Hartman’s theorem.
Consider the critical point at (0, 0). The eigenvalues are λ = ±1 and the critical
point is a saddle point or col. Next, consider the critical point at (2, 0); now the
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eigenvalues are λ1 = 1 and λ2 = −1. The corresponding eigenvectors are (−1, 1)T

and (1, 0)T , respectively. This critical point is also a saddle point or col. Consider
the critical point at (0, −2). Now the eigenvalues are λ1 = 3 and λ2 = 1; the
corresponding eigenvectors are (1, −1)T and (0, 1)T , respectively. The critical
point at (0, −2) is therefore an unstable node. Finally, consider the critical point
at

( 6
5 , 2

5

)
. The eigenvalues in this case are

λ = −2 ± i
√

11

5

and the critical point is a stable focus. There is no need to find the eigenvectors;
they are complex in this case.

Consider the isoclines. Now ẋ = 0 on x = 0 or on y = 1 − x
2 , and ẏ = 0 on

y = 0 or on y = 2x − 2. The directions of the flow can be found by considering ẏ

and ẋ on these curves.
The slope of the trajectories is given by

dy

dx
= y

(
x − 1 − y

2

)
x
(
1 − x

2 − y
) .

A phase portrait indicating the stable and unstable manifolds of the critical points
is shown in Figure 2.13.
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Figure 2.13: A phase portrait for Example 9. The axes are invariant.
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Example 10. Sketch a phase portrait for the nonlinear system

ẋ = y2, ẏ = x.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0. Therefore,
ẋ = 0 if y = 0 and ẏ = 0 if x = 0. Thus, the origin is the only critical point.

Attempt to linearize by finding the Jacobian matrix; hence,

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ =

(
0 2y

1 0

)
.

Linearize at the origin to obtain

J(0,0) =
(

0 0
1 0

)
.

The origin is a nonhyberbolic critical point. To sketch a phase portrait, solve
the differential equation

dy

dx
= ẏ

ẋ
= x

y2 .

This differential equation was solved in Chapter 1 and the solution curves were
given in Figure 1.2.

Consider the isoclines. Now ẋ = 0 on y = 0, and on this line, ẏ = x. Thus,
if x > 0, then ẏ > 0, and if x < 0, then ẏ < 0. Also, ẏ = 0 on x = 0, and on
this line, ẋ = y2. Thus, ẋ > 0 for all y. The slope of the trajectories is given by
dy
dx

= x
y2 . Putting all of this information together gives a phase portrait as depicted

in Figure 2.14.

Example 11. A simple model for the spread of an epidemic in a city is given by

Ṡ = −τSI, İ = τSI − rI,

where S(t) and I (t) represent the numbers of susceptible and infected individuals
scaled by 1000, respectively; τ is a constant measuring how quickly the disease
is transmitted; r measures the rate of recovery (assume that those who recover
become immune); and t is measured in days. Determine a value for S at which the
infected population is a maximum.

Given that τ = 0.003 and r = 0.5, sketch a phase portrait showing three
trajectories whose initial points are at (1000, 1), (700, 1), and (500, 1). Give a
physical interpretation in each case.

Solution. The maximum number of infected individuals occurs when dI
dS

= 0.
Now

dI

dS
= İ

Ṡ
= τS − r

−τS
.
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Figure 2.14: A phase portrait for Example 10 that has a nonhyperbolic critical
point at the origin. There is a cusp at the origin.

Therefore, dI
dS

= 0 when S = r
τ

. The number r
τ

is called the threshold value.
The critical points for this system are found by solving the equations Ṡ =

İ = 0. Therefore, there are an infinite number of critical points lying along the
horizontal axis. A phase portrait is plotted in Figure 2.15.

In each case, the population of susceptibles decreases to a constant value
and the population of infected individuals increases and then decreases to zero.
Note that in each case, the maximum number of infected individuals occurs at
S = r

τ
≈ 167,000.

Example 12. Chemical kinetics involving the derivation of one differential equa-
tion were introduced in Chapter 1. This example will consider a system of two
differential equations. Consider the isothermal chemical reaction

A + B � C,

in which one molecule ofA combines with one molecule of B to form one molecule
of C. In the reverse reaction, one molecule of C returns to A + B. Suppose that
the rate of the forward reaction is kf and the rate of the backward reaction is kr .
Let the concentrations of A, B, and C be a, b, and c, respectively. Assume that
the concentration of A is much larger than the concentrations of B and C and can
therefore be thought of as constant. From the law of mass action, the equations for
the kinetics of b and c are

ḃ = krc − kf ab, ċ = kf ab − krc.
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Figure 2.15: A phase portrait showing three trajectories for Example 11. The axes
are scaled by 103 in each case. Trajectories are only plotted in the first quadrant
since populations cannot be negative.

Find the critical points and sketch a typical trajectory for this system. Interpret the
results in physical terms.

Solution. The critical points are found by determining where ḃ = ċ = 0. Clearly,
there are an infinite number of critical points along the line c = kf a

kr
b. The slope

of the trajectories is given by

dc

db
= ċ

ḃ
= −1.

If c <
kf a

kr
b, then ḃ < 0 and ċ > 0. Similarly, if c >

kf a

kr
b, then ḃ > 0 and ċ < 0.

Two typical solution curves are plotted in Figure 2.16.
Thus, the final concentrations of B and C depend on the initial concentrations

of these chemicals. Two trajectories starting from the initial points at (b0, 0) and
(b0, c0) are plotted in Figure 2.16. Note that the chemical reaction obeys the law of
conservation of mass; this explains why the trajectories lie along the lines b + c =
constant.

Example 13. Suppose that H is a population of healthy rabbits and I is the
subpopulation of infected rabbits that never recover once infected, both measured
in millions. The following differential equations can be used to model the dynamics
of the system:

Ḣ = (b − d)H − δI, İ = τI (H − I ) − (δ + d)I,

where b is the birth rate, d is the natural death rate, δ is the rate of death of the
diseased rabbits, and τ is the rate at which the disease is transmitted.
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(b0, c0)
c

b0b

Figure 2.16: Two solution curves for the chemical kinetic equation in Example
12, where a is assumed to be constant. The dotted line represents the critical points
lying on the line c = kf a

kr
b.

Given that b = 4, d = 1, δ = 6, and τ = 1 and given an initial population
of (H0, I0) = (2, 2), plot a phase portrait and explain what happens to the rabbits
in real-world terms.

Solution. There are two critical points in the first quadrant at 0 = (0, 0) and
P = (14, 7). The Jacobian matrix is given by

J =
(

(b − d) −δ

τI τH − 2τI − (δ + b)

)
.

The critical point at the origin is a col with eigenvalues and corresponding eigen-
vectors given by λ1 = 3, (1, 0)T and λ2 = −7, (3, 5)T . The critical point at
P = (14, 7) has eigenvalues λ = −2 ± i

√
17 and is therefore a stable focus. A

phase portrait is plotted in Figure 2.17. Either the population of rabbits stabilizes
to the values at P or they become extinct, depending on the initial populations. For
example, plot a solution curve for the trajectory starting at (H0, I0) = (7, 14).

Models of interacting species will be considered in Chapter 3.

2.6 Maple Commands
Type ?DEplot after the > prompt for more information on plotting solution curves
for differential equations. DEplot will plot solution curves by numerical meth-
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Figure 2.17: A trajectory starting from the initial point (2, 2). The population
stabilizes to 14 million healthy rabbits and 7 million infected rabbits.

ods (the default method of integration is method=classical[rk4], the fourth-order
Runge–Kutta method).

> restart:with(DEtools):with(plots):

> # Program 2a: See Figure 2.8(a).

> # Example 4: Phase portrait of a linear system.

> iniset:={seq(seq([0,i,j],i=-2..2),j=-2..2)}:

> sys1:=diff(x(t),t)=2*x(t)+y(t),diff(y(t),t)=x(t)+2*y(t):

> DEplot([sys1],[x(t),y(t)],t=-5..5,iniset,stepsize=0.1,x=-3..3,y=-3..3,

arrows=SLIM,color=black,linecolor=blue,thickness=2,font

=[TIMES,ROMAN,15]);

> # Program 2b: See Figure 2.12.

> # Example 8: Phase portrait of a nonlinear system.

> iniset:={seq(seq([0,i,j],i=-2..2),j=-2..2)}:

> sys2:=diff(x(t),t)=y(t),diff(y(t),t)=x(t)*(1-(x(t))ˆ2)+y(t):

> DEplot([sys2],[x(t),y(t)],t=-10..10,iniset,stepsize=0.1,x=-3..3,y=-3..3,

arrows=SLIM,color=black,linecolor=blue,thickness=2,font

=[TIMES,ROMAN,15]);

> # Program 2c

> # Exercise 4(d): Determining the location of critical points.

> solve({2-x-yˆ2,-y*(xˆ2+yˆ2-3*x+1)},{x,y});
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2.7 Exercises
1. (a) Find the eigenvalues and eigenvectors of the matrix

B =
( −7 6

2 −6

)
.

Sketch a phase portrait for the system ẋ = Bx and its corresponding
canonical form.

(b) Carry out the same procedures as in part (a) for the system

ẋ = −4x − 8y, ẏ = −2y.

2. Sketch phase portraits for the following linear systems:

(a) ẋ = 0, ẏ = x + 2y;
(b) ẋ = x + 2y, ẏ = 0;
(c) ẋ = 3x + 4y, ẏ = 4x − 3y;
(d) ẋ = 3x + y, ẏ = −x + 3y;
(e) ẋ = y, ẏ = −x − 2y;
(f) ẋ = x − y, ẏ = y − x.

3. A very simple mechanical oscillator can be modeled using the second-order
differential equation

d2x

dt2 + µ
dx

dt
+ 25x = 0,

where x measures displacement from equilibrium.

(a) Rewrite this equation as a linear first-order system by setting ẋ = y.

(b) Sketch phase portraits when (i) µ = −8, (ii) µ = 0, (iii) µ = 8, and
(iv) µ = 26.

(c) Describe the dynamical behavior in each case given that x(0) = 1 and
ẋ(0) = 0.

Plot the corresponding solutions in the tx plane.

4. Plot phase portraits for the following systems:

(a) ẋ = y, ẏ = x − y + x3;
(b) ẋ = −2x − y + 2, ẏ = xy;
(c) ẋ = x2 − y2, ẏ = xy − 1;
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(d) ẋ = 2 − x − y2, ẏ = −y(x2 + y2 − 3x + 1);
(e) ẋ = y2, ẏ = x2;
(f) ẋ = x2, ẏ = y2;
(g) ẋ = y, ẏ = x3;
(h) ẋ = x, ẏ = µ − y2, for µ < 0, µ = 0, and µ > 0.

5. Construct a nonlinear system that has four critical points: two saddle points,
one stable focus, and one unstable focus.

6. A nonlinear capacitor–resistor electrical circuit can be modeled using the
differential equations

ẋ = y, ẏ = −x + x3 − (a0 + x)y,

where a0 is a nonzero constant and x(t) represents the current in the circuit
at time t . Sketch phase portraits when a0 > 0 and a0 < 0 and give a physical
interretation of the results.

7. An age-dependent population can be modeled by the differential equations

ṗ = β + p(a − bp), β̇ = β(c + (a − bp)),

where p is the population, β is the birth rate, and a, b, and c are all positive
constants. Find the critical points of this system and determine the long-term
solution.

8. The power, say, P , generated by a water wheel of velocity V can be modeled
by the system

Ṗ = −αP + PV, V̇ = 1 − βV − P 2,

where α and β are both positive. Describe the qualitative behavior of this
system as α and β vary and give physical interpretations of the results.

9. A very simple model for the economy is given by

İ = I − KS, Ṡ = I − CS − G0,

where I represents income, S is the rate of spending, G0 denotes constant
government spending, and C and K are positive constants.

(a) Plot possible solution curves when C = 1 and interpret the solutions
in economic terms. What happens when C 
= 1?

(b) Plot the solution curve when K = 4, C = 2, G0 = 4, I (0) = 15, and
S(0) = 5. What happens for other initial conditions?
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10. Given that

d3η

dτ 3 = −η
d2η

dτ 2

and

x = η
dη
dτ

d2η

dτ 2

, y =
(

dη
dτ

)2

η
d2η

dτ 2

and t = log

∣∣∣∣dη

dτ

∣∣∣∣ ,
prove that

ẋ = x(1 + x + y), ẏ = y(2 + x − y).

Plot a phase portrait in the xy plane.
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3
Interacting Species

Aims and Objectives
• To apply the theory of planar systems to modeling interacting species.

On completion of this chapter, the reader should be able to

• plot solution curves to modeling problems for planar systems;

• interpret the results in terms of species behavior.

The theory of planar ODEs is applied to the study of interacting species. The
models are restricted in that only two species are considered and external factors
such as pollution, environment, refuge, age classes, and other species interactions,
for example, are ignored. However, even these restricted systems give useful re-
sults. These simple models can be applied to species living in our oceans and to
both animal and insect populations on land. Note that the continuous differential
equations used in this chapter are only relevant if the species populations under
consideration are large, typically scaled by 104, 105, or 106 in applications.

A host–parasite system is presented subject to different types of predation by
a predator species.

3.1 Competing Species
Suppose that there are two species in competition with one another in an envi-
ronment where the common food supply is limited. For example, sea lions and
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penguins, red and gray squirrels, and ants and termites are all species which fall
into this category. There are two particular types of outcome that are often ob-
served in the real world. In the first case, there is coexistence, in which the two
species live in harmony. (In nature, this is the most likely outcome; otherwise, one
of the species would be extinct.) In the second case, there is mutual exclusion, in
which one of the species becomes extinct. (For example, American gray squirrels
imported into the United Kingdom are causing the extinction of the smaller native
red squirrels.)

Both coexistence and mutual exclusion can be observed when plotting solu-
tion curves on a phase plane diagram. Consider the following general model for
two competing species.

Example 1. Sketch possible phase plane diagrams for the following system:

ẋ = x(β − δx − γy), ẏ = y(b − dy − cx),(3.1)

where β, δ, γ, a, b, and c are all positive constants with x(t) and y(t)—both
positive—representing the two species populations measured in tens or hundreds
of thousands.

Solution. The terms appearing in the right-hand sides of (3.1) have a physical
meaning as follows:

• The terms βx − δx2 and by − dy2 represent the usual logistic growth of one
species (Verhulst’s equation).

• Both species suffer as a result of competition over a limited food supply,
hence the terms −γ xy and −cxy in ẋ and ẏ.

Construct a phase plane diagram in the usual way. Find the critical points,
linearize around each one, determine the isoclines, and plot the phase plane portrait.

Locate the critical points by solving the equations ẋ = ẏ = 0. There are four
critical points at

O = (0, 0), P =
(

0,
b

d

)
, Q =

(
β

δ
, 0

)
, and R =

(
γ b − βd

γ c − δd
,
βc − δb

γ c − δd

)
.

Suppose that C1 = γ c − δd , C2 = γ b − βd, and C3 = βc − δb. For the
critical point to lie in the first quadrant, one of the following conditions must hold:

(i) C1, C2, and C3 are all negative.

(ii) C1, C2, and C3 are all positive.

Linearize by finding the Jacobian matrix. Therefore,

J =
(

β − 2δx − γy −γ x

−cy b − 2dy − cx

)
.
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Linearize at each critical point. Thus,

JO =
(

β 0
0 b

)
.

For the critical point at P ,

JP =
(

β − γ b/d 0
−bc/d −b

)
.

For the critical point at Q,

JQ =
( −β −γβ/δ

0 b − βc/δ

)
.

Finally, for the critical point at R,

JR = 1

C1

(
δC2 γC2
cC3 dC3

)
.

Consider case (i) first. The fixed points are all simple and it is not difficult
to show that O is an unstable node, P and Q are cols, and for certain parameter
values, R is a stable fixed point. A phase portrait is plotted in Figure 3.1(a), where
eight of an infinite number of solution curves are plotted. Each trajectory is plotted
numerically for both positive and negative time steps; in this way, critical points
are easily identified in the phase plane. For the parameter values chosen here, the
two species coexist and the populations stabilize to constant values after long time
periods. The arrows in the Figure 3.1(a) show the vector field plot and define the
direction of the trajectories for system (3.1). The slope of each arrow is given by
dy
dx

at the point, and the direction of the arrows is determined from ẋ and ẏ. There
is a stable node lying wholly in the first quadrant at R, and the nonzero populations
x(t) and y(t) tend to this critical point with increasing time regardless of what the
initial populations are. The domain of stability for the critical point at R is therefore
SR = {(x, y) ∈ �2 : x > 0, y > 0}.

Now consider case (ii). The fixed points are all simple, and it is not difficult
to show that O is an unstable node, P and Q are stable or improper nodes, and
R is a col. A phase portrait is shown in Figure 3.1(b), where nine of an infinite
number of solution curves are plotted. Once more, the trajectories are plotted for
both positive and negative time iterations. In this case, one of the species becomes
extinct.

In Figure 3.1(b), the critical point lying wholly in the first quadrant is a
saddle point or col, which is unstable. The long-term behavior of the system is
divided along the diagonal in the first quadrant. Trajectories starting to the right
of the diagonal will tend to the critical point at Q = (2, 0), which implies that
species y becomes extinct. Trajectories starting to the left of the diagonal will
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Figure 3.1: (a) A possible phase portrait showing coexistence and (b) a possible
phase portrait depicting mutual exclusion. Note that the axes are invariant in both
cases.

tend to the critical point at P = (0, 2), which means that species x will become
extinct. Numerically, the trajectories lying on the stable manifold of the saddle
point in the first quadrant will tend toward the critical point at R. However, in
the real world, populations cannot remain exactly on the stable manifold, and
trajectories will be diverted from this critical point leading to extinction of one of
the species. The domain of stability for the critical point at P = (0, 2) is given by
SP = {(x, y) ∈ �2 : x > 0, y > 0, y > x}. The domain of stability for the critical
point at Q = (2, 0) is given by SQ = {(x, y) ∈ �2 : x > 0, y > 0, y < x}.

3.2 Predator–Prey Models
Consider a two-species predator–prey model in which one species preys on another.
Examples in the natural world include sharks and fish, lynx and snow-shoe hares,
and ladybirds and aphids.A very simple differential equation—first used byVolterra
in 1926 [7, 8] and known as the Lotka–Volterra model—is given in Example 2.

Example 2. Sketch a phase portrait for the system

ẋ = x(α − cy), ẏ = y(γ x − δ),(3.2)

where α, c, γ , and δ are all positive constants, with x(t) and y(t) representing the
scaled population of prey and predator, respectively, and t is measured in years.
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Solution. The terms appearing in the right-hand sides of (3.2) have a physical
meaning as follows:

• The term αx represents the growth of the population of prey in the absence
of any predators. This is obviously a crude model; the population of a species
cannot increase forever.

• The terms −cxy and +γ xy represent species interaction. The population of
prey suffers and predators gain from the interaction.

• The term −δy represents the extinction of predators in the absence of prey.

Attempt to construct a phase plane diagram in the usual way. Find the critical
points, linearize around each one, determine the isoclines, and plot the phase plane
portrait.

The critical points are found by solving the equations ẋ = ẏ = 0. There are

two critical points: one at O = (0, 0) and the other at P =
(

δ
γ
, α

c

)
.

Linearize to obtain

J =
(

α − cy −cx

γy −δ + γ x

)
.

The critical point at the origin is a saddle point, and the stable and unstable
manifolds lie along the axes. The stable manifold lies on the positive y-axis and
the unstable manifold lies on the x-axis. The critical point at P is not hyperbolic,
and so Hartman’s theorem cannot be applied. System (3.2) has solution curves
(the differential equation is separable) given by xδyαe−γ xe−cy = K , where K is
a constant. These solution curves may be plotted in the phase plane. The isoclines
are given by x = 0, y = α

c
, where the flow is vertical, and y = 0, x = δ

γ
, where

the flow is horizontal. The vector fields are found by considering ẋ, ẏ, and dy
dx

. A
phase portrait is shown in Figure 3.2.

The population fluctuations can also be represented in the tx and ty planes.
The graphs shown in Figure 3.3 show how the populations of predator and prey
typically oscillate.

Note that the oscillations are dependent on the initial conditions. In Figure
3.3, the period of both cycles is about 10 years. Different sets of initial conditions
can give solutions with different amplitudes. For example, plot the solution curves
in the tx and ty planes for the initial conditions x(0) = 1 and y(0) = 3.

How can this system be interpreted in terms of species behavior? Consider
the trajectory passing through the point (1, 3) in Figure 3.2. At this point, the ratio
of predators to prey is high; as a result, the population of predators drops. The ratio
of predators to prey drops, and so the population of prey increases. Once there are
lots of prey, the predator numbers will again start to increase. The resulting cyclic
behavior is repeated over and over and is shown as the largest closed trajectory in
Figure 3.2.
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Figure 3.2: A phase portrait for the Lotka–Volterra model.
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Figure 3.3: [Notebook] (a) Periodic behavior of the prey and (b) periodic behavior
of the predators for one set of initial conditions, namely x(0) = 1, y(0) = 2.
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If small perturbations are introduced into system (3.2)—to model other fac-
tors, for example—then the qualitative behavior changes. The periodic cycles can
be destroyed by adding small terms into the right-hand sides of system (3.2). The
system is said to be structurally unstable (or not robust).

Many predator–prey interactions have been modeled in the natural world.
For example, there are data dating back over 150 years for the populations of
lynx and snowshoe hares from the Hudson Bay Company in Canada. The data
clearly shows that the populations periodically rise and fall (with a period of about
10 years) and that the maximum and minimum values (amplitudes) are relatively
constant. This is not true for the Lotka–Volterra model (see Figure 3.2). Different
initial conditions can give solutions with different amplitudes. In 1975, Holling
and Tanner constructed a system of differential equations whose solutions have
the same amplitudes in the long term, regardless of the initial populations. Two
particular examples of the Holling–Tanner model for predator–prey interactions
are given in Example 3.

The reader is encouraged to compare the terms (and their physical meaning)
appearing in the right-hand sides of the differential equations in Examples 1–3.

Example 3. Consider the specific Holling–Tanner model

ẋ = x
(

1 − x

7

)
− 6xy

(7 + 7x)
, ẏ = 0.2y

(
1 − Ny

x

)
,(3.3)

where N is a constant, with x(t) 
= 0 and y(t) representing the populations of
prey and predators, respectively. Sketch phase portraits when (i) N = 2.5 and (ii)
N = 0.5.

Solution. The terms appearing in the right-hand sides of (3.3) have a physical
meaning as follows:

• The term x
(
1 − x

7

)
represents the usual logistic growth in the absence of

predators.

• The term − 6xy
(7+7x)

represents the effect of predators subject to a maximum
predation rate.

• The term 0.2y
(

1 − Ny
x

)
denotes the predator growth rate when a maximum

of x/N predators is supported by x prey.

Construct a phase plane diagram in the usual way. Find the critical points,
linearize around each one, determine the isoclines, and plot a phase plane portrait.

Consider case (i). The critical points are found by solving the equations
ẋ = ẏ = 0. There are two critical points in the first quadrant: A = (5, 2) and
B = (7, 0). The Jacobian matrices are given by

JA =
( −1 −3/4

0 1/5

)
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and

JB =
( −10/21 −5/7

2/25 −1/5

)
.

The eigenvalues and eigenvectors of JA are given by λ1 = −1; (1, 0)T and
λ2 = 1/5; (− 5

8 , 1)T . Therefore, this critical point is a saddle point or col with the
stable manifold lying along the x-axis and the unstable manifold tangent to the line
with slope − 8

5 in a small neighborhood around the critical point. The eigenvalues
of JB are given by λ ≈ −0.338 ± 0.195i. Therefore, the critical point at B is a
stable focus.

A phase portrait showing four trajectories and the vector field is shown in
Figure 3.4(a).
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Figure 3.4: (a) A phase portrait for system (3.3) when N = 2.5; (b) intersection
of the isoclines.

The populations eventually settle down to constant values. If there are any
natural disasters or diseases, for example, then the populations would both decrease
but eventually return to the stable values. This is, of course, assuming that neither
species becomes extinct. There is no periodic behavior in this model.

Consider case (ii). The critical points are found by solving the equations
ẋ = ẏ = 0. There are two critical points in the first quadrant: A = (1, 2) and
B = (7, 0). The Jacobian matrices are given by

JA =
( −1 −3/4

0 1/5

)
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and

JB =
(

2/7 −3/7
2/5 −1/5

)
.

The eigenvalues and eigenvectors of JA are given by λ1 = −1; (1, 0)T and
λ2 = 1/5; (− 5

8 , 1)T . Therefore, this critical point is a saddle point or col with
the stable manifold lying along the x-axis and the unstable manifold tangent to
the line with slope − 8

5 near the critical point. The eigenvalues of JB are given by
λ ≈ 0.043 ± 0.335i. Therefore, the critical point at B is an unstable focus.

All trajectories lying in the first quadrant are drawn to the closed periodic
cycle shown in Figure 3.5(a). Therefore, regardless of the initial values of x(t) and
y(t), the populations eventually rise and fall periodically. This isolated periodic
trajectory is known as a stable limit cycle. In the long term, all trajectories in the
first quadrant are drawn to this periodic cycle, and once there, they remain there
forever. Definitions and the theory of limit cycles will be introduced in Chapter 4.
The isoclines are plotted in Figure 3.5(b); these curves show where the flow is
horizontal or vertical, in this case.
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Figure 3.5: [Maple] (a) A phase portrait for system (3.3) when N = 0.5; (b) in-
tersection of the isoclines.

The limit cycle persists if small terms are added to the right-hand sides of
the differential equations in system (3.3). The system is structurally stable (or
robust) since small perturbations do not affect the qualitative behavior. Again, the
populations of both predator and prey oscillate in a manner similar to the Lotka–
Volterra model with another major exception. The final steady-state solution for
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the Holling–Tanner model is independent of the initial conditions. Use Maple to
plot time series plots for the solutions plotted in Figure 3.5(a). A program is listed
in Section 3.4. The period of the limit cycle can be easily established from the
time series plot. This model appears to match very well with what happens for
many predator–prey species in the natural world—for example, house sparrows
and sparrow hawks in Europe, muskrat and mink in Central North America, and
white-tailed deer and wolf in Ontario.

From the time series plot, the period, say,T , of the limit cycle is approximately
19 units of time. Thus, if t is measured in 6 month intervals, then this would be
a good model for the lynx and snowshoe hare populations, which have a natural
period of about 10 years. Periodicity of limit cycles will be discussed in the next
chapter.

3.3 Other Characteristics Affecting Interacting
Species

A simple model of one species infected with a disease was considered in Chap-
ter 2. The models considered thus far for interacting species have been limited to
only two populations, and external factors have been ignored. Hall et al. [1] con-
sidered a stable host–parasite system subject to selective predation by a predator
species. They considered a microparasite–zooplankton–fish system where the host
is Daphnia dentifera and the predator fish species is bluegill sunfish. They investi-
gated how predator selectivity on parasitized and nonparasitized hosts affects the
populations. The differential equations are given by

Ṡ = bS[1 − c(S + I )] − dS − βSI − fS(S, I, P ),

İ = βSI − (d + α)I − fI (S, I, P ),
(3.4)

where S is the susceptible population, I is the infected population, b is the birth rate,
c is the density dependence of birth rates, d is the mortality rate, β represents contact
with infected hosts, and α is the parasite-induced mortality rate. The functions fS

and fI represent predator interaction with a saturating functional response, given
by

fS(S, I, P ) = PS

hS + S + θγ I
, fI (S, I, P ) = PθI

hS + S + θγ I
,

where P is a predation intensity term, θ represents the selectivity of the predator,
hS represents a half-saturation constant of predators for susceptible hosts, and γ

is a handling time for susceptible and infected hosts. More details can be found in
the research paper [1] in the reference section of this chapter. Bifurcation diagrams
are plotted in the research paper [1], and it is shown how predation selectivity can
affect the host–parasite system. For example, for the parameter values b = 0.4,
c = 1

20 , θ = 5, α = β = d = 0.05, P = 1, and γ = hS = 1, it is shown that
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the host-parasite system coexists in a periodic manner, as depicted in Figure 3.6.
Maple command lines for producing time series data are listed in Section 3.4.
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Figure 3.6: Coexistence of the host-parasite species when P = 1 and the produc-
tivity term, 1

c
= 20. There is a limit cycle in the SI plane.

Note that for other parameter values, predation can catalyze extinction of
both hosts and parasites.

There are a great many research papers published every year on interacting
species, and the author hopes that this chapter will inspire the reader to investigate
further. To conclude Chapter 3, some other characteristics ignored here will be
listed. Of course, the differential equations will become more complicated and are
beyond the scope of this chapter.

• Age classes—for example, young, mature, and old; time lags need to be
introduced into the differential equations (see Chapter 11).

• Diseases—epidemics affecting one or more species (see Chapter 2).

• Environmental effects.

• Enrichment of prey—this can lead to extinction of predators.

• Harvesting and culling policies (see Chapter 11).

• Pollution—persistence and extinction.

• Refuge—for example, animals in Africa find refuge in the bush.
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• Seasonal effects—for example, some animals hibernate in winter.

• Three or more species interactions (see the exercises in Section 3.5).

One interesting example is discussed by Lenbury et al. [5], in which predator–
prey interaction is coupled to parasitic infection. One or both of the species can
become infected, and this can lead to mathematical problems involving four sys-
tems of differential equations. The dynamics become far more complicated, and
more interesting behavior is possible. Higher-dimensional systems will be dis-
cussed later in the book.

3.4 Maple Commands
See Section 2.6 for help with plotting phase portraits.

> # Program 3a: Competing species model.

> # Figure 3.1(b):

> restart:with(DEtools):with(plots):

beta:=2:delta:=1:gama:=2:b:=2:d:=1:c:=2:

sys1:=diff(x(t),t)=x(t)*(beta-delta*x(t)-gama*y(t)),

diff(y(t),t)=y(t)*(b-d*y(t)-c*x(t)):

iniset:=seq(seq([0,i,j],i=-2..2),j=-2..2):

DEplot([sys1],[x(t),y(t)],t=-20..20,[[0,0.3,0.3],[0,1,1],[0,2,1.5],

[0,0.6,2.5],[0,0.6,0.64],[0,0.5,0.2],[0,0.2,0.5],[0,0.6,1],

[0,0.65,0.64]],stepsize=0.1,x=0..3,y=0..3,color=black,linecolor=blue,

thickness=2,font=[TIMES,ROMAN,15]);

> # Program 3b: Predator-prey model.

> # Figures 3.2 and 3.3(a): Lotka-Volterra model.

> sys2:=diff(x(t),t)=x(t)*(1-y(t)),diff(y(t),t)=0.3*y(t)*(x(t)-1):

Figure 3.2: Phase portrait of a predator-prey model (Lotka-Volterra).

DEplot([sys2],[x(t),y(t)],t=0..100,[[0,1,2],[0,1,3],[0,1,1.2]],

stepsize=0.1,x=0..6,y=0..3,color=black,linecolor=blue,thickness=2,

font=[TIMES,ROMAN,15]);

> # Time series plot.

> DEplot([sys2],[x(t),y(t)],t=0..50,[[0,1,2]],stepsize=0.1,x=0..4,

y=0..4,color=black,linecolor=blue,thickness=2,font=[TIMES,ROMAN,15],

scene=[t,x]);

> # Program 3c: Predator-prey model.

> # Figure 3.5(a): Holling-Tanner model.

> sys3:=diff(x(t),t)=x(t)*(1-(x(t))/7)-6*x(t)*y(t)/(7+7*x(t)),

diff(y(t),t)=0.2*y(t)*(1-y(t)/(2*x(t))):

DEplot([sys3],[x(t),y(t)],t=0..100,[[0,7,0.1],[0,1.1,2]],

stepsize=0.01,x=0.1..7,y=0.1..4.5,color=black,linecolor=blue,

thickness=2,arrows=SMALL,font=[TIMES,ROMAN,15]);
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3.5 Exercises
1. Plot a phase portrait for the competing species model

ẋ = 2x − x2 − xy, ẏ = 3y − y2 − 2xy

and describe what happens in terms of species behavior.

2. Plot a phase plane diagram for the following predator–prey system and in-
terpret the solutions in terms of species behavior:

ẋ = 2x − xy, ẏ = −3y + xy.

3. Plot a phase portrait for the following system and describe what happens to
the population for different initial conditions:

ẋ = 2x − x2 − xy, ẏ = −y − y2 + xy.

4. The differential equations used to model a competing species are given by

ẋ = x(2 − x − y), ẏ = y
(
µ − y − µ2x

)
,

where µ is a constant. Describe the qualitative behavior of this system as the
parameter µ varies.

5. (a) Sketch a phase portrait for the system

ẋ = x(4 − y − x), ẏ = y(3x − 1 − y), x ≥ 0, y ≥ 0,

given that the critical points occur at O = (0, 0), A = (4, 0), and
B = (5/4, 11/4).

(b) Sketch a phase portrait for the system

ẋ = x(2 − y − x), ẏ = y(3 − 2x − y), x ≥ 0, y ≥ 0,

given that the critical points occur at O = (0, 0), C = (0, 3), D =
(2, 0), and E = (1, 1).

One of the systems can be used to model predator–prey interactions and the
other competing species. Describe which system applies to which model and
interpret the results in terms of species behavior.

6. A predator–prey system may be modeled using the differential equations

ẋ = x(1 − y − εx), ẏ = y(−1 + x − εy),

where x(t) is the population of prey and y(t) is the predator population size
at time t . Classify the critical points for ε ≥ 0 and plot phase portraits for
the different types of qualitative behavior. Interpret the results in physical
terms.
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7. A predator–prey model is given by

ẋ = x(x − x2 − y), ẏ = y(x − 0.6).

Sketch a phase portrait and interpret the results in physical terms.

8. Use Maple to plot a trajectory for the predator–prey system

ẋ = x(x − x2 − y), ẏ = y(x − 0.48)

using the initial condition (0.6, 0.1). What can you deduce about the long-
term populations?

9. Suppose that there are three species of insect X, Y , and Z, say. Give rough
sketches to illustrate the possible ways in which these species can inter-
act with one another. You should include the possibility of a species being
cannibalistic. Three-dimensional systems will be discussed later.

10. The following three differential equations are used to model a combined
predator–prey and competing species system:

ẋ = x(a10 − a11x + a12y − a13z),

ẏ = y(a20 − a21x − a22y − a23z),

ż = z(a30 + a31x − a32y − a33z),

where aij are positive constants. Give a physical interpretation for the terms
appearing in the right-hand sides of these differential equations.
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4
Limit Cycles

Aims and Objectives
• To give a brief historical background.

• To define features of phase plane portraits.

• To introduce the theory of planar limit cycles.

• To introduce perturbation methods.

On completion of this chapter, the reader should be able to

• prove existence and uniqueness of a limit cycle;

• prove that certain systems have no limit cycles;

• interpret limit cycle behavior in physical terms;

• find approximate solutions for perturbed systems.

Limit cycles, or isolated periodic solutions, are the most common form of so-
lution observed when modeling physical systems in the plane. Early investigations
were concerned with mechanical and electronic systems, but periodic behavior is
evident in all branches of science. Two limit cycles were plotted in Chapter 3 when
considering the modeling of interacting species.

The chapter begins with a historical introduction and then the theory of planar
limit cycles is introduced.
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4.1 Historical Background
Definition 1. A limit cycle is an isolated periodic solution.

Limit cycles in planar differential systems commonly occur when modeling
both the technological and natural sciences. Most of the early history in the theory
of limit cycles in the plane was stimulated by practical problems. For example, the
differential equation derived by Rayleigh in 1877 [14], related to the oscillation of
a violin string, is given by

ẍ + ε

(
1

3
(ẋ)2 − 1

)
ẋ + x = 0,

where ẍ = d2x
dt2 and ẋ = dx

dt
. Let ẋ = y. Then this differential equation can be

written as a system of first-order autonomous differential equations in the plane

ẋ = y, ẏ = −x − ε

(
y2

3
− 1

)
y.(4.1)

A phase portrait is shown in Figure 4.1.
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Figure 4.1: Periodic behavior in the Rayleigh system (4.1) when ε = 1.0.

Following the invention of the triode vacuum tube, which was able to produce
stable self-excited oscillations of constant amplitude, van der Pol [16] obtained the
following differential equation to describe this phenomenon:

ẍ + ε
(
x2 − 1

)
ẋ + x = 0,
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which can be written as a planar system of the form

ẋ = y, ẏ = −x − ε
(
x2 − 1

)
y.(4.2)

A phase portrait is shown in Figure 4.2.
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Figure 4.2: Periodic behavior for system (4.2) when ε = 5.0.

The basic model of a cell membrane is that of a resistor and capacitor in
parallel. The equations used to model the membrane are a variation of the van der
Pol equation. The famous Fitzhugh–Nagumo oscillator [8, 12, 13] used to model
the action potential of a neuron is a two-variable simplification of the Hodgkin–
Huxley equations [10]. The Fitzhugh–Nagumo model creates quite accurate action
potentials and models the qualitative behavior of the neurons. The differential
equations are given by

u̇ = −u(u − θ)(u − 1) − v + ω, v̇ = ε(u − γ v),

where u is a voltage, v is the recovery of voltage, θ is a threshold, γ is a shunting
variable, and ω is a constant voltage. For certain parameter values, the solution
demonstrates a slow collection and fast release of voltage; this kind of behavior
has been labeled integrate and fire. Note that, for biological systems, neurons cannot
collect voltage immediately after firing and need to rest. Oscillatory behavior for
the Fitzhugh—Nagumo system is shown in Figure 4.3. Maple command lines for
producing Figure 4.3 are listed in Section 4.4.

Note that when ω = ω(t) is a periodic external input, the system becomes
nonautonomous and can display chaotic behavior [8]. The reader can investigate
these systems via the exercises in Chapter 8.
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Figure 4.3: [Maple] A limit cycle for the Fitzhugh–Nagumo oscillator. In this
case, γ = 2.54, θ = 0.14, ω = 0.112, and ε = 0.01. The dashed curves are the
isoclines, where the trajectories cross horizontally and vertically.

Perhaps the most famous class of differential equations that generalize (4.2)
are those first investigated by Liénard in 1928 [15],

ẍ + f (x)ẋ + g(x) = 0,

or, in the phase plane,

ẋ = y, ẏ = −g(x) − f (x)y.(4.3)

This system can be used to model mechanical systems, where f (x) is known
as the damping term and g(x) is called the restoring force or stiffness. Equation (4.3)
is also used to model resistor–inductor–capacitor circuits (see Chapter 1) with
nonlinear circuit elements. Limit cycles of Liénard systems will be discussed in
some detail in Chapters 9 and 10.

Possible physical interpretations for limit cycle behavior of certain dynamical
systems are as follows:

• For predator–prey and epidemic models, the populations oscillate in phase
with one another and the systems are robust (see examples in Chapter 3 and
Exercise 8 in Chapter 7).

• Periodic behavior is present in integrate and fire neurons (see Figure 4.3).
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• For mechanical systems, examples include the motion of simple nonlinear
pendula (see Section 8.3), wing rock oscillations in aircraft flight dynamics
[4], and surge oscillations in axial flow compressors [6], for example.

• For periodic chemical reactions, examples include the Landolt clock reaction
and the Belousov-Zhabotinski reaction (see Chapter 7).

• For electrical or electronic circuits, it is possible to construct simple elec-
tronic oscillators (Chua’s circuit, for example) using a nonlinear circuit ele-
ment; a limit cycle can be observed if the circuit is connected to an oscillo-
scope.

Limit cycles are common solutions for all types of dynamical systems. Some-
times it becomes necessary to prove the existence and uniqueness of a limit cycle,
as described in the next section.

4.2 Existence and Uniqueness of Limit Cycles in the
Plane

To understand the existence and uniqueness theorem, it is necessary to define some
features of phase plane portraits.Assume that the existence and uniqueness theorem
from Chapter 1 holds for all solutions considered here.

Definitions 1 and 2 in Chapter 2 can be extended to nonlinear planar sys-
tems of the form ẋ = P(x, y), ẏ = Q(x, y); thus, every solution, say, φ(t) =
(x(t), y(t)), can be represented as a curve in the plane and is called a trajectory.
The phase portrait shows how the qualitative behavior is determined as x and y

vary with t . The trajectory can also be defined in terms of the spatial coordinates
x, as in Definition 3. A brief look at Example 1 will help the reader to understand
Definitions 1–7 in this section.

Definition 2. A flow on �2 is a mapping π : �2 → �2 such that

1. π is continuous;

2. π(x, 0) = x for all x ∈ �2;
3. π(π(x, t1), t2) = π(x, t1 + t2).

Definition 3. Suppose that Ix is the maximal interval of existence. The trajectory
(or orbit) through x is defined as γ (x) = {π(x, t) : t ∈ Ix}.

The positive semiorbit is defined as γ +(x) = {π(x, t) : t > 0} .

The negative semiorbit is defined as γ −(x) = {π(x, t) : t < 0} .

Definition 4. The positive limit set of a point x is defined as

�+(x) = {y : there exists a sequence tn → ∞ such that π(x, t) → y} .
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The negative limit set of a point x is defined as

�−(x) = {y : there exists a sequence tn → −∞ such that π(x, t) → y} .

In the phase plane, trajectories tend to a critical point, a closed orbit, or infinity.

Definition 5. A set S is invariant with respect to a flow if x ∈ S implies that
γ (x) ⊂ S.

A set S is positively invariant with respect to a flow if x ∈ S implies that
γ +(x) ⊂ S.

A set S is negatively invariant with respect to a flow if x ∈ S implies that
γ −(x) ⊂ S.

A general trajectory can be labeled γ for simplicity.

Definition 6. A limit cycle, say, �, is

• a stable limit cycle if �+(x) = � for all x in some neighborhood; this implies
that nearby trajectories are attracted to the limit cycle;

• an unstable limit cycle if �−(x) = � for all x in some neighborhood; this
implies that nearby trajectories are repelled away from the limit cycle;

• a semistable limit cycle if it is attracting on one side and repelling on the
other.

The stability of limit cycles can also be deduced analytically using the
Poincaré map (see Chapter 8). The following example will be used to illustrate
each of Definitions 1–7.

Definition 7. The period, say, T , of a limit cycle is given by x(t) = x(t + T ),
where T is the minimum period. The period can be found by plotting a time series
plot of the limit cycle (see the Maple command lines in Chapter 3).

Example 1. Describe some of the features for the following set of polar differential
equations in terms of Definitions 1–7:

ṙ = r(1 − r)(2 − r)(3 − r), θ̇ = −1.(4.4)

Solution. A phase portrait is shown in Figure 4.4. There is a unique critical point
at the origin since θ̇ is nonzero. There are three limit cycles that may be determined
from the equation ṙ = 0. They are the circles of radii 1, 2, and 3, all centered at
the origin. Let �i denote the limit cycle of radius r = i.

There is one critical point at the origin. If a trajectory starts at this point, it
remains there forever. A trajectory starting at (1, 0) will reach the point (−1, 0)

when t1 = π and the motion is clockwise. Continuing on this path for another
time interval t2 = π , the orbit returns to (1, 0). Using part 3 Definition 2, one can
write π (π((1, 0), t1), t2) = π ((1, 0), 2π) since the limit cycle is of period 2π
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Figure 4.4: Three limit cycles for system (4.4).

(see below). On the limit cycle �1, both the positive and negative semiorbits lie
on �1.

Suppose that P = ( 1
2 , 0) and Q = (4, 0) are two points in the plane. The limit

sets are given by �+(P ) = �1, �−(P ) = (0, 0), �+(Q) = �3, and �−(Q) = ∞.
The annulus A1 = {r ∈ �2 : 0 < r < 1} is positively invariant, and the

annulus A2 = {r ∈ �2 : 1 < r < 2} is negatively invariant.
If 0 < r < 1, then ṙ > 0 and the critical point at the origin is unstable. If

1 < r < 2, then ṙ < 0 and �1 is a stable limit cycle. If 2 < r < 3, then ṙ > 0 and
�2 is an unstable limit cycle. Finally, if r > 3, then ṙ < 0 and �3 is a stable limit
cycle.

Integrate both sides of θ̇ = −1 with respect to time to show that the period
of all of the limit cycles is 2π .

The Poincaré–Bendixson Theorem. Suppose that γ + is contained in a bounded
region in which there are finitely many critical points. Then �+(γ ) is either

• a single critical point;

• a single closed orbit;

• a graphic—critical points joined by heteroclinic orbits.

A heteroclinic orbit connects two separate critical points and takes an infinite
amount of time to make the connection; more detail is provided in Chapter 5.

Corollary. Let D be a bounded closed set containing no critical points and suppose
that D is positively invariant. Then there exists a limit cycle contained in D.

A proof to this theorem involves topological arguments and can be found in
[1], for example.
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Example 2. By considering the flow across the rectangle with corners at (−1, 2),
(1, 2), (1, −2), and (−1, −2), prove that the following system has at least one
limit cycle:

ẋ = y − 8x3, ẏ = 2y − 4x − 2y3.(4.5)

Solution. The critical points are found by solving the equations ẋ = ẏ = 0. Set
y = 8x3. Then ẏ = 0 if x(1 − 4x2 + 256x8) = 0. The graph of the function
y = 1 − 4x2 + 256x8 is given in Figure 4.5(a). The graph has no roots and the
origin is the only critical point.

Linearize at the origin in the usual way. It is not difficult to show that the
origin is an unstable focus.

Consider the flow on the sides of the given rectangle:

• On y = 2, |x| ≤ 1, ẏ = −4x − 12 < 0.

• On y = −2, |x| ≤ 1, ẏ = −4x + 12 > 0.

• On x = 1, |y| ≤ 2, ẋ = y − 8 < 0.

• On x = −1, |y| ≤ 2, ẏ = y + 8 > 0.

The flow is depicted in Figure 4.5(b). The rectangle is positively invariant
and there are no critical points other than the origin, which is unstable. Consider
a small deleted neighborhood, say, Nε , around this critical point. For example, the
boundary of Nε could be a small ellipse. On this ellipse, all trajectories will cross
outward. Therefore, there exists a stable limit cycle lying inside the rectangular
region and outside of Nε by the corollary to the Poincaré–Bendixson theorem.

Definition 8. A planar simple closed curve is called a Jordan curve.

Consider the system

(4.6) ẋ = P(x, y), ẏ = Q(x, y),

where P and Q have continuous first-order partial derivatives. Let the vector field
be denoted by X and let ψ be a weighting factor that is continuously differen-
tiable. Recall Green’s theorem, which will be required to prove the following two
theorems.

Green’s Theorem. Let J be a Jordan curve of finite length. Suppose that P and
Q are two continuously differentiable functions defined on the interior of J , say,
D. Then ∫∫

D

[
∂P

∂x
+ ∂Q

∂y

]
dx dy =

∮
J

P dy − Q dx.
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Figure 4.5: (a) Polynomial of degree 8. (b) Flow across the rectangle for system
(4.5).

Dulac’s Criteria. Consider an annular region, say, A, contained in an open set
E. If

∇.(ψX) = div (ψX) = ∂

∂x
(ψP ) + ∂

∂y
(ψQ)

does not change sign in A, then there is at most one limit cycle entirely contained
in A.

Proof. Suppose that �1 and �2 are limit cycles encircling K , as depicted in Fig-
ure 4.6, of periods T1 and T2, respectively. Apply Green’s theorem to the region R

shown in Figure 4.6:∫∫
R

[
∂(ψP )

∂x
+ ∂(ψQ)

∂y

]
dx dy =

∮
�2

ψP dy − ψQ dx

+
∫

L

ψP dy − ψQ dx −
∮

�1

ψP dy − ψQ dx −
∫

L

ψP dy − ψQ dx.

Now, on �1 and �2, ẋ = P and ẏ = Q, so∫∫
R

[
∂(ψP )

∂x
+ ∂(ψQ)

∂y

]
dx dy

=
∫ T2

0
(ψPQ − ψQP) dt −

∫ T1

0
(ψPQ − ψQP) dt,
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which is zero and contradicts the hypothesis that div(ψX) 
= 0 in A. Therefore,
there is at most one limit cycle entirely contained in the annulus A.

Γ

2Γ

1
K

L

R
A

Figure 4.6: Two limit cycles encircling the region K .

Example 3. Use Dulac’s criteria to prove that the system

(4.7) ẋ = −y + x(1 − 2x2 − 3y2), ẏ = x + y(1 − 2x2 − 3y2)

has a unique limit cycle in an annulus.

Solution. Convert to polar coordinates using the transformations

rṙ = xẋ + yẏ, r2θ̇ = xẏ − yẋ.

Therefore, system (4.7) becomes

ṙ = r(1 − 2r2 − r2 sin2 θ), θ̇ = 1.

Since θ̇ = 1, the origin is the only critical point. On the circle r = 1
2 , ṙ =

1
2 ( 1

2 − 1
4 sin2 θ). Hence, ṙ > 0 on this circle. On the circle r = 1, ṙ = −1− sin2 θ .

Hence, ṙ < 0 on this circle. If r ≥ 1, then ṙ < 0, and if 0 < r ≤ 1
2 , then ṙ > 0.

Therefore, there exists a limit cycle in the annulus A = {r : 1
2 < r < 1} by the

corollary to the Poincaré–Bendixson theorem.
Consider the annulus A. Now div(X) = 2(1−4r2−2r2 sin2 θ). If 1

2 < r < 1,
then div(X) < 0. Since the divergence of the vector field does not change sign in
the annulus A, there is at most one limit cycle in A by Dulac’s criteria.

A phase portrait is given in Figure 4.7.

Example 4. Plot a phase portrait for the Liénard system

ẋ = y, ẏ = −x − y(a2x
2 + a4x

4 + a6x
6 + a8x

8 + a10x
10 + a12x

12 + a14x
14),

where a2 = 90, a4 = −882, a6 = 2598.4, a8 = −3359.997, a10 = 2133.34,
a12 = −651.638, and a14 = 76.38.

Solution. Not all limit cycles are convex closed curves, as Figure 4.8 demonstrates.
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Figure 4.7: A phase portrait for system (4.7) showing the unique limit cycle.

4.3 Nonexistence of Limit Cycles in the Plane
Bendixson’s Criteria. Consider system (4.6) and suppose that D is a simply
connected domain (no holes in D) and that

∇.(ψX) = div(ψX) = ∂

∂x
(ψP ) + ∂

∂y
(ψQ) 
= 0

in D. Then there are no limit cycles entirely contained in D.

Proof. Suppose that D contains a limit cycle � of period T . Then from Green’s
theorem∫∫

D

[
∂(ψP )

∂x
+ ∂(ψQ)

∂y

]
dx dy =

∮
�

(ψPdy − ψQdx)

=
∫ T

0

(
ψP

dy

dt
− ψQ

dx

dt

)
dt = 0

since, on �, ẋ = P and ẏ = Q. This contradicts the hypothesis that div(ψX) 
= 0,
and therefore D contains no limit cycles entirely.

Definition 9. Suppose there is a compass on a Jordan curve C and that the needle
points in the direction of the vector field. The compass is moved in a counter-
clockwise direction around the Jordan curve by 2π radians. When it returns to its
initial position, the needle will have moved through an angle, say, �. The index, say,
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Figure 4.8: [Maple] A phase portrait for Example 4. The limit cycle is a nonconvex
closed curve.

IX(C), is defined as

IX(C) = ��

2π
,

where �� is the overall change in the angle �.

The above definition can be applied to isolated critical points. For example,
the index of a node, focus, or center is +1 and the index of a col is −1. The
following result is clear.

Theorem 1. The sum of the indices of the critical points contained entirely within
a limit cycle is +1.

The next theorem then follows.

Theorem 2. A limit cycle contains at least one critical point.

When proving that a system has no limit cycles, the following items should
be considered:

1. Bendixson’s criteria;

2. indices;

3. invariant lines;

4. critical points.
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Example 5. Prove that none of the following systems have any limit cycles:

(a) ẋ = 1 + y2 − exy, ẏ = xy + cos2y.

(b) ẋ = y2 − x, ẏ = y + x2 + yx3.

(c) ẋ = y + x3, ẏ = x + y + y3.

(d) ẋ = 2xy − 2y4, ẏ = x2 − y2 − xy3.

(e) ẋ = x(2 − y − x), ẏ = y(4x − x2 − 3), given ψ = 1
xy

.

Solutions.

(a) The system has no critical points and, hence, no limit cycles by Theorem 2.

(b) The origin is the only critical point and it is a saddle point or col. Since the
index of a col is −1, there are no limit cycles from Theorem 1.

(c) Find the divergence, divX = ∂P
∂x

+ ∂Q
∂y

= 3x2 + 3y2 + 1 
= 0. Hence, there
are no limit cycles by Bendixson’s criteria.

(d) Find the divergence divX = ∂P
∂x

+ ∂Q
∂y

= −3x2y. Now divX = 0 if either

x = 0 or y = 0. However, on the line x = 0, ẋ = −2y4 ≤ 0, and on the
line y = 0, ẏ = x2 ≥ 0. Therefore, a limit cycle must lie wholly in one of
the four quadrants. This is not possible since divX is nonzero here. Hence,
there are no limit cycles by Bendixson’s criteria. Draw a small diagram to
help you understand the solution.

(e) The axes are invariant since ẋ = 0 if x = 0 and ẏ = 0 if y = 0. The weighted
divergence is given by div(ψX) = ∂

∂x
(ψP ) + ∂

∂y
(ψQ) = − 1

y
. Therefore,

there are no limit cycles contained entirely in any of the quadrants, and since
the axes are invariant, there are no limit cycles in the whole plane.

Example 6. Prove that the system

ẋ = x(1 − 4x + y), ẏ = y(2 + 3x − 2y)

has no limit cycles by applying Bendixson’s criteria with ψ = xmyn.

Solution. The axes are invariant since ẋ = 0 on x = 0 and ẏ = 0 on y = 0. Now

div(ψX) = ∂

∂x

(
xm+1yn − 4xm+2yn + xm+1yn+1

)
+ ∂

∂y

(
2xmyn+1 + 3xm+1yn+1 − 2xmyn+2

)
,

which simplifies to

div(ψX) = (m+2n+2)xmyn + (−4m+3n−5)xm+1yn + (m−2n−3)xmyn+1.
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Select m = 1
2 and n = − 5

4 . Then

div(ψX) = −43

4
x

3
2 y− 5

4 .

Therefore, there are no limit cycles contained entirely in any of the four quadrants,
and since the axes are invariant, there are no limit cycles at all.

4.4 Perturbation Methods
This section introduces the reader to some basic perturbation methods by means
of example. The theory involves mathematical methods for finding series expan-
sion approximations for perturbed systems. Perturbation theory can be applied to
algebraic equations, boundary value problems, difference equations, Hamiltonian
systems, ODEs, and PDEs, and in modern times the theory underlies almost all of
quantum field theory and quantum chemistry. There are whole books devoted to
the study of perturbation methods and the reader is directed to references [2], [5],
and [7] for more detailed theory and more in-depth explanations.

To keep the theory simple and in relation to other material in this chapter, the
author has decided to focus on perturbed ODEs of the form

(4.8) ẍ + x = εf (x, ẋ) ,

where 0 ≤ ε � 1 and f (x, ẋ) is an arbitrary smooth function. The unperturbed
system represents a linear oscillator, and when 0 < ε � 1, system (4.8) becomes
a weakly nonlinear oscillator. Systems of this form include the Duffing equation

(4.9) ẍ + x = εx3

and the van der Pol equation

(4.10) ẍ + x = ε
(
x2 − 1

)
ẋ.

The main idea begins with the assumption that the solution to the perturbed system
can be expressed as an asymptotic expansion of the form

(4.11) x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + · · · .

Definition 10. The sequence f (ε) ∼ ∑∞
n=0 anφn(ε) is an asymptotic (or Poincaré)

expansion of the continuous function f (ε) if and only if, for all n ≥ 0,

(4.12) f (ε) =
N∑

n=0

anφn(ε) + O (φN+1(ε)) as ε → 0,

where the sequence constitutes an asymptotic scale such that for every n ≥ 0,

φn+1(ε) = o (φn(ε)) as ε → 0.
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Definition 11. An asymptotic expansion (4.12) is said to be uniform if, in addition,

|RN(x, ε)| ≤ K|φN+1(ε)|,
for ε in a neighborhood of 0, where the N th remainder RN(x, ε) = O(φN+1(ε))

as ε → 0 and K is a constant.

In this particular case, we will be looking for asymptotic expansions of the
form

x(t, ε) ∼
∑

k

xk(t)δk(ε),

where δk(ε) = εk is an asymptotic scale. It is important to note that the asymptotic
expansions often do not converge; however, one-term and two-term approxima-
tions provide an analytical expression that is dependent on the parameter, ε, and
some initial conditions. The major advantage that the perturbation analysis has
over numerical analysis is that a general solution is available through perturbation
methods, whereas numerical methods only lead to a single solution.

Example 7. Use perturbation theory to find a one-term and two-term asymp-
totic expansion of Duffing’s equation (4.9) with initial conditions x(0) = 1 and
ẋ(0) = 0.

Solution. Substitute (4.11) into (4.9) to get

d2

dt2 (x0 + εx1 + · · · ) + (x0 + εx1 + · · · ) = ε (x0 + εx1 + · · · )3 .

Use the collect command in Maple to group terms according to powers of ε; thus,

[ẍ0 + x0] + ε
[
ẍ1 + x1 − x3

0

]
+ O(ε2) = 0.

The order equations are

O(1) : ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0,

O(ε) : ẍ1 + x1 = x3
0 , x1(0) = 0, ẋ1(0) = 0.

...
...

The O(1) solution is x0 = cos(t). Let us compare this solution with the numerical
solution, say, xN , when ε = 0.01. Figure 4.9 shows the time against the error,
xN − x0, for 0 ≤ t ≤ 100.

Using Maple, the O(ε) solution is computed to be

x1 = 1

32

( − 8 cos(t) + 8 cos5(t) + 12t sin(t) + 8 sin(t) sin(2t) + sin(t) sin(4t)
)
,

which simplifies to

x1 = 3

8
t sin(t) + 1

16
sin(2t).
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20 40 60 80 100
t

−0.3
−0.2
−0.1

0.1
0.2
0.3

xN − x0

Figure 4.9: The error between the numerical solution xN and the one-term expan-
sion x0 for the Duffing system (4.9) when ε = 0.01.

Thus,

x ∼ xP = cos(t) + ε

(
3

8
t sin(t) + 1

16
sin(2t)

)
,

where xP represents the Poincaré expansion up to the second term. The term
t sin(t) is called a secular term and is an oscillatory term of growing amplitude.
Unfortunately, the secular term leads to a nonuniformity for large t . Figure 4.10
shows the error for the two-term Poincaré expansion, xN − xP , when ε = 0.01.

20 40 60 80 100
t

−0.06
−0.04
−0.02

0.02
0.04
0.06

xN − xP

Figure 4.10: The error between the numerical solution xN and the two-term ex-
pansion xP for the Duffing system (4.9) when ε = 0.01.

By introducing a strained coordinate, the nonuniformity may be overcome
and this is the idea behind the Lindstedt–Poincaré technique for periodic systems.
The idea is to introduce a straining transformation of the form

(4.13)
τ

t
= 1 + εω1 + ε2ω2 + · · · ,

and seek values ω1, ω2, . . . that avoid secular terms appearing in the expansion.

Example 8. Use the Lindstedt–Poincaré technique to determine a two-term uni-
form asymptotic expansion of Duffing’s equation (4.9) with initial conditions
x(0) = 1 and ẋ(0) = 0.

Solution. Using the transformation given in (4.13),

d

dt
= dτ

dt

d

dτ
=

(
1 + εω1 + ε2ω2 + · · ·

) d

dτ
,
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d2

dt2 =
(

1 + εω1 + ε2ω2 + · · ·
)2 d2

dτ 2 .

Applying the transformation to (4.9) leads to

(
1 + 2εω1 + ε2

(
ω2

1 + 2ω2

)
+ · · ·

) d2x

dτ 2 + x = εx3,

where x is now a function of the strained variable τ . Assume that

(4.14) x(τ, ε) = x0(τ ) + εx1(τ ) + ε2x2(τ ) + · · · .

Substituting (4.14) into (4.9) using Maple gives the following order equations:

O(1) : d2x0

dτ 2 + x0 = 0,

x0(τ = 0) = 1,
dx0

dτ
(τ = 0) = 0,

O(ε) : d2x1

dτ 2 + x1 = x3
0 − 2ω1

d2x0

dτ 2 ,

x1(0) = 0,
dx1

dτ
(0) = 0,

O(ε2) : d2x2

dτ 2 + x2 = 3x2
0x1 − 2ω1

d2x1

dτ 2 − (ω2
1 + 2ω2)

d2x0

dτ 2 ,

x2(0) = 0,
dx2

dτ
(0) = 0.

The O(1) solution is x0(τ ) = cos(τ ). Using Maple, the solution to the O(ε)

equation is

x1(τ ) = 1

8
sin(τ ) (3τ + 8ω1τ + cos(τ ) sin(τ )) .

To avoid secular terms, select ω1 = − 3
8 then the O(ε) solution is

x1(τ ) = 1

8
sin2(τ ) cos(τ ).

Using Maple, the O(ε2) solution is

x2(τ ) = 1

512
sin(τ ) (42τ + 512ω2τ + 23 sin(2τ) − sin(4τ)) ,

and selecting ω2 = − 21
256 avoids secular terms.
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The two-term uniformly valid expansion of (4.9) is

x(τ, ε) ∼ xLP = cos(τ ) + ε

8
sin2(τ ) cos(τ ),

where

τ = t

(
1 − 3

8
ε − 21

256
ε2 + O(ε3)

)
,

as ε → 0. Note that the straining transformation is given to a higher order than the
expansion of the solution. The difference between the two-term uniform asymptotic
expansion and the numerical solution is depicted in Figure 4.11.

20 40 60 80 100
t

−0.00001

−5. × 10−6

5. × 10−6

0.00001
xN − xLP

Figure 4.11: The error between the numerical solution xN and the two-term
Linstedt–Poincaré expansion xLP for the Duffing system (4.9) when ε = 0.01.

Unfortunately, the Lindstedt–Poincaré technique does not always work for
oscillatory systems.An example of its failure is provided by the van der Pol equation
(4.10).

Example 9. Show that the Lindstedt-Poincaré technique fails for the ODE (4.10)
with initial conditions x(0) = 1 and ẋ(0) = 0.

Solution. Substituting (4.14) into (4.10) using Maple gives the following order
equations:

O(1) : d2x0

dτ 2 + x0 = 0,

x0(τ = 0) = 1,
dx0

dτ
(τ = 0) = 0,

O(ε) : d2x1

dτ 2 + x1 = dx0

dτ
− x2

0
dx0

dτ
− 2ω1

d2x0

dτ 2 ,

x1(0) = 0,
dx1

dτ
(0) = 0,

The O(1) solution is x0(τ ) = cos(τ ). Using Maple, the solution to the O(ε)

equation can be simplified to

x1(τ ) = 1

16
(6τ cos(τ ) − (5 − 16τω1 + cos(2τ)) sin(τ ))
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or

x1(τ ) = 1

16
({6τ cos(τ ) + 16τω1 sin(τ )} − (5 + cos(2τ)) sin(τ )) .

To remove secular terms, set ω1 = − 3
8 cot(τ ); then

x(τ, ε) = cos(τ ) + O(ε),

where

τ = t − 3

8
εt cot(t) + O(ε2).

This is invalid since the cotangent function is singular when t = nπ , where n is
an integer. Unfortunately, the Lindstedt–Poincaré technique does not work for all
ODEs of the form (4.8); it cannot be used to obtain approximations that evolve
aperiodically on a slow timescale.

Consider the van der Pol equation (4.10), Figure 4.12 shows a trajectory
starting at x(0) = 0.1, ẋ(0) = 0 for ε = 0.05 and 0 ≤ t ≤ 800. The trajectory
spirals around the origin and it takes many cycles for the amplitude to grow sub-
stantially. As t → ∞, the trajectory asymptotes to a limit cycle of approximate
radius 2. This is an example of a system whose solutions depend simultaneously
on widely different scales. In this case there are two timescales: a fast timescale for
the sinusoidal oscillations ∼ O(1) and a slow timescale over which the amplitude
grows ∼ O( 1

ε
). The method of multiple scales introduces new slow-time variables

for each time scale of interest in the problem.

Figure 4.12: A trajectory for the van der Pol equation (4.10) when ε = 0.05.

The Method of Multiple Scales. Introduce new timescales, say, τ0 = t and τ1 =
εt , and seek approximate solutions of the form

(4.15) x(t, ε) ∼ x0 (τ0, τ1) + εx1 (τ0, τ1) + · · · .

Substitute into the ODE and solve the resulting PDEs. An example is given below.
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Example 10. Use the method of multiple scales to determine a uniformly valid
one-term expansion for the van der Pol equation (4.10) with initial conditions
x(0) = a and ẋ(0) = 0.

Solution. Substitute (4.15) into (4.10) using Maple gives the following order equa-
tions:

O(1) : ∂2x0

∂τ 2
0

+ x0 = 0,

O(ε) : ∂2x1

∂τ 2
0

+ x1 = −2
∂x0

∂τ0τ1
−

(
x2

0 − 1
) ∂x0

∂τ0
.

The general solution to the O(1) PDE may be found using Maple,

x0 (τ0, τ1) = c1(τ1) cos(τ0) + c2(τ1) sin(τ0),

which, using trigonometric identities, can be expressed as

(4.16) x0 (τ0, τ1) = R(τ1) cos(τ0 + θ(τ1)),

where R(τ1) and θ(τ1) are the slowly varying amplitude and phase of x0, respec-
tively. Substituting (4.16), the O(ε) equation becomes

∂2x1

∂τ 2
0

+ x1 = − 2

(
dR

dτ1
sin(τ0 + θ(τ1)) + R(τ1)

dθ

dτ1
cos(τ0 + θ(τ1))

)

− R(τ1) sin(τ0 + θ(τ1))
(
R2(τ1) cos2(τ0 + θ(τ1)) − 1

)
.(4.17)

In order to avoid resonant terms on the right-hand side, which lead to secular terms
in the solution, it is necessary to remove the linear terms cos(τ0 + θ(τ1)) and
sin(τ0 + θ(τ1)) from the equation. Use the combine command in Maple to reduce
an expression to a form linear in the trigonometric function. Equation (4.17) then
becomes

∂2x1

∂τ 2
0

+ x1 =
{
−2

dR

dτ1
+ R − R3

4

}
sin(τ0 + θ(τ1))

{
−2R

dθ

dτ1

}
cos(τ0 + θ(τ1)) − R3

4
sin(3τ0 + 3θ(τ1)).

To avoid secular terms, set

(4.18) −2
dR

dτ1
+ R − R3

4
= 0 and

dθ

dτ1
= 0.

The initial conditions are x0(0, 0) = a and ∂x0
∂τ0

= 0, leading to θ(0) = 0 and
R(0) = a

2 . The solutions to system (4.18) with these initial conditions are easily
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computed with Maple; thus,

R(τ1) = 2√
1 +

(
4
a2 − 1

)
e−τ1

and θ(τ1) = 0.

Therefore, the uniformly valid one-term solution is

x0(τ0, τ1) = 2 cos(τ0)√
1 +

(
4
a2 − 1

)
e−τ1

+ O(ε)

or

x(t) = 2 cos(t)√
1 +

(
4
a2 − 1

)
e−εt

+ O(ε).

As t → ∞, the solution tends asymptotically to the limit cycle x = 2 cos(t)+O(ε),
for all initial conditions. Notice that only the initial condition a = 2 gives a periodic
solution.

Figure 4.13 shows the error between the numerical solution and the one-term
multiple scale approximation, say, xMS , when ε = 0.01 and x(0) = 1, ẋ(0) = 0.

20 40 60 80 100
t

−0.004

−0.002

0.002

0.004

xN − xMS

Figure 4.13: The error between the numerical solution xN and the one-term mul-
tiple scale expansion xMS for the van der Pol equation (4.10) when ε = 0.01 and
x(0) = 1, ẋ(0) = 0.

4.5 Maple Commands
See Section 2.6 for help with plotting phase portraits.

> # Program 4a: Limit cycle.

> # Figure 4.3: The Fitzhugh-Nagumo oscillator.

> theta:=0.14:w:=0.112:epsilon:=0.01:gama:=2.54:

sys1:=diff(u(t),t)=-u(t)*(u(t)-theta)*(u(t)-1)-v(t)+w,

diff(v(t),t)=epsilon*(u(t)-gama*v(t)):

iniset:=seq(seq([0,i,j],i=-2..2),j=-2..2):

DEplot([sys1],[u(t),v(t)],t=50..150,[[0,0.5,0.1]],stepsize=0.01,

u=-0.4..1.2,v=0..0.4,color=black,linecolor=blue,thickness=2);
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> # Program 4b: Limit cycle.

> # Figure 4.8: A nonconvex limit cycle.

> a2:=90:a4:=-882:a6:=2598.4:a8:=-3359.997:a10:=2133.34:a12:=-651.638:

a14:=76.38:epsilon:=1:a0:=0:

sys2:=diff(x(t),t)=y(t),diff(y(t),t)=-x(t)-epsilon*y(t)*(a14*x(t)ˆ14+

a12*x(t)ˆ12+a10*x(t)ˆ10+a8*x(t)ˆ8+a6*x(t)ˆ6+a4*x(t)ˆ4+a2*x(t)ˆ2-a0):

DEplot([sys2],[x(t),y(t)],t=30..60,[[x(0)=1.5,y(0)=0]],x=-2..2,y=-3..3,

stepsize=0.05,linecolor=blue,thickness=2);

4.6 Exercises
1. Prove that the system

ẋ = y + x

(
1

2
− x2 − y2

)
, ẏ = −x + y

(
1 − x2 − y2

)

has a stable limit cycle. Plot the limit cycle.

2. By considering the flow across the square with coordinates (1, 1), (1, −1),
(−1, −1), and (−1, 1), centered at the origin, prove that the system

ẋ = −y + x cos(πx), ẏ = x − y3

has a stable limit cycle. Plot the vector field, limit cycle, and square.

3. Prove that the system

ẋ = x − y − x3, ẏ = x + y − y3

has a unique limit cycle.

4. Prove that the system

ẋ = y + x(α − x2 − y2), ẏ = −x + y(1 − x2 − y2),

where 0 < α < 1, has a limit cycle and determine its stability.

5. For which parameter values does the Holling–Tanner model

ẋ = xβ
(

1 − x

k

)
− rxy

(a + ax)
, ẏ = by

(
1 − Ny

x

)

have a limit cycle?
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6. Plot phase portraits for the Liénard system

ẋ = y − µ(−x + x3), ẏ = −x

when (a) µ = 0.01 and (b) µ = 10.

7. Prove that none of the following systems have limit cycles:

(a) ẋ = y, ẏ = −x − (1 + x2 + x4)y;
(b) ẋ = x − x2 + 2y2, ẏ = y(x + 1);
(c) ẋ = y2 − 2x, ẏ = 3 − 4y − 2x2y;
(d) ẋ = −x + y3 − y4, ẏ = 1 − 2y − x2y + x4;
(e) ẋ = x2 − y − 1, ẏ = y(x − 2);
(f) ẋ = x − y2(1 + x3), ẏ = x5 − y;
(g) ẋ = 4x − 2x2 − y2, ẏ = x(1 + xy).

8. Prove that neither of the following systems have limit cycles using the given
multipliers:

(a) ẋ = x(4 + 5x + 2y), ẏ = y(−2 + 7x + 3y), ψ = 1
xy2 ;

(b) ẋ = x(β − δx − γy), ẏ = y(b − dy − cx), ψ = 1
xy

.

In case (b), prove that there are no limit cycles in the first quadrant only.
These differential equations were used as a general model for competing
species in Chapter 3.

9. Use the Lindstedt–Poincaré technique to obtain a one-term uniform expan-
sion for the ODE

d2x

dt2 + x = εx

(
1 −

(
dx

dt

)2
)

,

with initial conditions x(0) = a and ẋ(0) = 0.

10. Using the method of multiple scales, show that the one-term uniform valid
expansion of the ODE

d2x

dt2 + x = −ε
dx

dt
,

with initial conditions x(0) = b, ẋ(0) = 0 is

x(t, ε) ∼ xMS = be− εt
2 cos(t),

as ε → 0.
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5
Hamiltonian Systems, Lyapunov
Functions, and Stability

Aims and Objectives
• To study Hamiltonian systems in the plane.

• To investigate stability using Lyapunov functions.

On completion of this chapter, the reader should be able to

• prove whether a system is Hamiltonian;

• sketch phase portraits of Hamiltonian systems;

• use Lyapunov functions to determine the stability of a critical point;

• distinguish between stability and asymptotic stability.

The theory of Hamiltonian (or conservative) systems in the plane is intro-
duced. The differential equations are used to model dynamical systems in which
there is no energy loss. Hamiltonian systems are also used extensively when bifur-
cating limit cycles in the plane (see Chapters 9 and 10).

Sometimes it is not possible to apply the linearization techniques to determine
the stablility of a critical point or invariant set. In certain cases, the flow across
level curves, defined by Lyapunov functions, can be used to determine the stability.
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5.1 Hamiltonian Systems in the Plane
Definition 1. A system of differential equations on �2 is said to be Hamiltonian
with one degree of freedom if it can be expressed in the form

dx

dt
= ∂H

∂y
,

dy

dt
= −∂H

∂x
,(5.1)

where H(x, y) is a twice-continuously differentiable function. The system is said
to be conservative and there is no dissipation. In applications, the Hamiltonian is
defined by

H(x, y) = K(x, y) + V (x, y),

where K is the kinetic energy and V is the potential energy. Hamiltonian systems
with two degrees of freedom will be discussed in Chapter 8.

Theorem 1 (Conservation of Energy). The total energy H(x, y) is a first integral
and a constant of the motion.

Proof. The total derivative along a trajectory is given by

dH

dt
= ∂H

∂x

dx

dt
+ ∂H

∂y

dy

dt
= 0

from the chain rule and (5.1). Therefore, H(x, y) is constant along the solution
curves of (5.1), and the trajectories lie on the contours defined by H(x, y) = C,
where C is a constant.

Consider a simple mechanical system which is Hamiltonian in the plane.

The Simple Nonlinear Pendulum. The differential equation used to model the
motion of a pendulum in the plane (see Figure 5.1) may be derived using Newton’s
law of motion:

(5.2)
d2θ

dt2 + g

l
sin θ = 0,

where θ is the angular displacement from the vertical, l is the length of the arm of
the pendulum, which swings in the plane, and g is the acceleration due to gravity.

This model does not take into account any resistive forces, so once the pen-
dulum is set into motion, it will swing periodically forever, thus obeying the con-
servation of energy. The system is called conservative since no energy is lost. A
periodically forced pendulum will be discussed in Chapter 8.

Let θ̇ = φ. Then system (5.2) can be written as a planar system in the form

(5.3) θ̇ = φ, φ̇ = −g

l
sin θ.

The critical points occur at (nπ, 0) in the (θ, φ) plane, where n is an integer.
It is not difficult to show that the critical points are hyperbolic if n is odd and



5.1. Hamiltonian Systems in the Plane 115

θ

Pivot

Figure 5.1: A simple nonlinear pendulum.

nonhyperbolic if n is even. Therefore, Hartman’s theorem cannot be applied when

n is even. However, system (5.3) is a Hamiltonian system with H(θ, φ) = φ2

2 −
g
l

cos θ (kinetic energy + potential energy), and therefore the solution curves may

be plotted. The direction field may be constructed by considering dφ
dθ

, θ̇ , and φ̇.
Solution curves and direction fields are given in Figure 5.2(a).

The axes of Figure 5.2(a) are the angular displacement (θ ) and angular ve-
locity (θ̇ ). The closed curves surrounding the critical points (2nπ, 0) represent
periodic oscillations, and the wavy lines for large angular velocities correspond to
motions in which the pendulum spins around its pivotal point. The closed curves
correspond to local minima on the surface z = H(θ, φ) and the unstable critical
points correspond to local maxima on the same surface.

Definition 2. A critical point of the system

(5.4) ẋ = f(x), x ∈ �2,

at which the Jacobian matrix has no zero eigenvalues is called a nondegenerate
critical point; otherwise, it is called a degenerate critical point.

Theorem 2. Any nondegenerate critical point of an analytic Hamiltonian system
is either a saddle point or a center.

Proof. Assume that the critical point is at the origin. The Jacobian matrix is equal to

JO =
⎛
⎝ ∂2H

∂x∂y
(0, 0) ∂2H

∂y2 (0, 0)

− ∂2H
∂x2 (0, 0) − ∂2H

∂y∂x
(0, 0)

⎞
⎠ .
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Figure 5.2: [Maple] (a) A phase portrait for system (5.3) when −4π ≤ θ ≤ 4π .
(b) The surface z = H(θ, φ).

Now trace(J0) = 0 and

det(J0) = ∂2H

∂x2 (0, 0)
∂2H

∂y2 (0, 0) −
(

∂2H

∂x∂y
(0, 0)

)2

.

The origin is a saddle point if det(J0) < 0. If det(J0) > 0, then the origin is either
a center or a focus. Note that the critical points of system (5.1) correspond to the
stationary points on the surface z = H(x, y). If the origin is a focus, then the origin
is not a strict local maximum or minimum of the Hamiltonian function. Suppose
that the origin is a stable focus, for instance. Then

H(x0, y0) = lim
t→∞ H(x(t, x0, y0), y(t, x0, y0)) = H(0, 0),

for all (x0, y0) ∈ Nε(0, 0), where Nε denotes a small deleted neighborhood of the
origin. However, H(x, y) > H(0, 0) at a local minimum and H(x, y) < H(0, 0)

at a local maximum, a contradiction. A similar argument can be applied when the
origin is an unstable focus.

Therefore, a nondegenerate critical point of a Hamiltonian is either a saddle
point or a center.

Example 1. Find the Hamiltonian for each of the following systems and sketch
the phase portraits:
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(a) ẋ = y, ẏ = x + x2;
(b) ẋ = y + x2 − y2, ẏ = −x − 2xy.

Solution.

(a) Integration gives H(x, y) = y2

2 − x2

2 − x3

3 ; the solution curves are given
by H(x, y) = C. There are two critical points at (0, 0) and (−1, 0), which
are both nondegenerate. The critical point at the origin is a saddle point or
col from linearization, and the eigenvectors are (1, −1)T and (1, 1)T . The
critical point at (−1, 0) is a center from Theorem 1. If y > 0, then ẋ > 0,
and if y < 0, then ẋ < 0. A phase portrait is given in Figure 5.3.
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Figure 5.3: A phase portrait for Example 1(a).

(b) Integration gives H(x, y) = x2

2 + y2

2 +x2y− y3

3 ; the solution curves are given
by H(x, y) = C. There are four critical points at O = (0, 0), A = (0, 1),

B =
(√

3
2 , − 1

2

)
, and C =

(
−

√
3

2 , − 1
2

)
, which are all nondegenerate. The

critical point at the origin is a center by Theorem 1, and the critical points at
A, B, and C are saddle points or cols from linearization. The eigenvectors
determine the stable and unstable manifolds of the cols. The eigenvectors for
point A are (1,

√
3)T and (1, −√

3)T ; the eigenvectors for B are (1, −√
3)T

and (1, 0)T ; and the eigenvectors for C are (1, 0)T and (1,
√

3)T . The solu-
tion curves and direction fields are shown in Figure 5.4.

Definition 3. Suppose that x0 is a critical point of system (5.4). If �+(γ ) =
�−(γ ) = x0, then γ is a homoclinic orbit.
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Figure 5.4: A phase portrait for Example 1(b). The lines y = − 1
2 , y = −√

3x +1,
and y = √

3x + 1 are invariant.

An example of a homoclinic orbit is given in Figure 5.3. The unstable and
stable manifolds from the origin form a homoclinic loop around the critical point
at (−1, 0). A homoclinic orbit connects a critical point to itself and takes an infinite
amount of time to make the connection.

Definition 4. Suppose that x0 and y0 are distinct critical points. If �+(γ ) = x0
and �−(γ ) = y0, then γ is called a heteroclinic orbit.

Examples of heteroclinic orbits are given in Figure 5.4. They are the three

orbits lying on the line segments {y = − 1
2 , −

√
3

2 < x <
√

3
2 }, {y = −√

3x +
1, −

√
3

2 < x <
√

3
2 }, and {y = √

3x + 1, −
√

3
2 < x <

√
3

2 }.
Definition 5. A separatrix is an orbit that divides the phase plane into two distinctly
different types of qualitative behavior. The homoclinic and heteroclinic orbits are
examples of separatrix cycles.

For example, in Figure 5.3, orbits are bounded inside the homoclinic orbit
surrounding the point(−1, 0) and unbounded outside it.

5.2 Lyapunov Functions and Stability
Consider nonlinear systems of the form (5.4). The stability of hyperbolic critical
points may be determined from the eigenvalues of the Jacobian matrix. The critical
point is stable if the real part of all of the eigenvalues is negative and unstable
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otherwise. If a critical point is nonhyberbolic, then a method due to Lyapunov may
sometimes be used to determine the stability of the critical point.

Imagine a system defined by the potential function V (x, y), where

ẋ = −∂V

∂x
, ẏ = −∂V

∂y
.

The negative signs arise from the analogies with potential energy from physics.
Now

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt
= −

(
∂V

∂x

)2

−
(

∂V

∂y

)2

≤ 0.

This implies that V (t) decreases along trajectories and the motion is always to-
ward lower potentials. Now ẋ = ẏ = 0 when ∂V

∂x
= ∂V

∂y
= 0, corresponding to

local maxima, minima, or saddle points on V (x, y). Local maxima correspond to
unstable critical points, and local minima correspond to stable critical points.

Example 2. Plot a phase portrait for the system ẋ = x − x3, ẏ = −y and plot the
potential function for this system.

Solution. There are three critical points at O = (0, 0), A = (−1, 0), and B =
(1, 0). The origin is unstable and the critical points A and B are stable, as seen
in Figure 5.5(a). The function z = V (x, y) = −x2/2 + x4/4 + y2/2, plotted in
Figure 5.5(b), is known as the double-well potential. The system is multistable
since it has two stable critical points.
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Figure 5.5: (a) A phase portrait for Example 2. (b) The double-well potential.
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The local minima in Figure 5.5(b) correspond to the stable critical points
at A and B. The local maximum at the origin corresponds to the saddle point in
Figure 5.5(a).

Definition 6. A critical point, say, x0, of system (5.4) is called stable if, given
ε > 0, there is a δ > 0 such that for all t ≥ t0, ‖ x(t) − x0(t) ‖< ε whenever
‖ x(t0) − x0(t0) ‖< δ, where x(t) is a solution of (5.4).

Definition 7. A critical point, say, x0, of system (5.4) is called asymptotically
stable if it is stable and there is an η > 0 such that

lim
t→∞ ‖ x(t) − x0(t) ‖= 0,

whenever ‖ x(t0) − x0(t0) ‖< η.

A trajectory near a stable critical point will remain close to that point, whereas
a trajectory near an asymptotically stable critical point will move closer and closer
to the critical point as t → ∞.

The following theorem holds for system (5.4) when x ∈ �n. Examples in �3

are given in Chapter 7.

The Lyapunov Stability Theorem. Let E be an open subset of �n containing
an isolated critical point x0. Suppose that f is continuously differentiable and that
there exists a continuously differentiable function, say, V (x), which satisfies the
following conditions:

• V (x0) = 0;
• V (x) > 0, if x 
= x0,

where x ∈ �n. Then

1. if V̇ (x) ≤ 0 for all x ∈ E, x0 is stable;

2. if V̇ (x) < 0 for all x ∈ E, x0 is asymptotically stable;

3. if V̇ (x) > 0 for all x ∈ E, x0 is unstable.

Proof.

1. Choose a small neighborhood Nε surrounding the critical point x0. In this
neighborhood, V̇ (x) ≤ 0, so a positive semiorbit starting inside Nε remains
there forever. The same conclusion is drawn regardless of how small ε is
chosen to be. The critical point is therefore stable.

2. Since V̇ (x) < 0, the Lyapunov function must decrease monotonically on
every positive semiorbit x(t). Let φt be the flow defined by f(x). Then either
V (φt ) → x0 as t → ∞ or there is a positive semiorbit x(t) such that

(5.5) V (φt ) ≥ n > 0 for all t ≥ t0,
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for some n > 0. Since x0 is stable, there is an annular region A, defined by
n ≤ V (x) ≤ c, containing this semiorbit. Suppose that V̇ attains its upper
bound in A, say, −N , so

V̇ (x) ≤ −N < 0, x ∈ A, N > 0.

Integration gives

V (x(t)) − V (x(t0)) ≤ −N(t − t0),

where t > t0. This contradicts (5.5), and therefore no path fails to approach
the critical point at x0. The critical point is asymptotically stable.

3. Since V̇ (x) > 0, V (x) is strictly increasing along trajectories of (5.4). If φt

is the flow of (5.4), then

V (φt ) > V (x0) > 0

for t > 0 in a small neighborhood of x0, Nε . Therefore,

V (φt ) − V (x0) ≥ kt

for some constant k and t ≥ 0. Hence, for sufficiently large t ,

V (φt ) > kt > K,

where K is the maximum of the continuous function V (x) on the compact
set Nε . Therefore, φt lies outside the closed set Nε and x0 is unstable.

Definition 8. The function V (x) is called a Lyapunov function.

Unfortunately, there is no systematic way to construct a Lyapunov function.
The Lyapunov functions required for specific examples will be given in this book.
Note that if V̇ (x) = 0, then all trajectories lie on the curves (surfaces in �n) defined
by V (x) = C, where C is a constant. The quantity V̇ gives the rate of change of V

along trajectories; in other words, V̇ gives the direction that trajectories cross the
level curves V (x) = C.

Example 3. Determine the stability of the origin for the system

ẋ = −y3, ẏ = x3.

Solution. The eigenvalues are both zero and the origin is a degenerate critical
point. A Lyapunov function for this system is given by V (x, y) = x4 + y4, and
furthermore,

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt
= 4x3(−y3) + 4y3(x3) = 0.
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Hence, the solution curves lie on the closed curves given by x4 + y4 = C. The
origin is thus stable but not asymptotically stable. The trajectories that start near
the origin remain there but do not approach the origin asymptotically. If y > 0,
then ẋ < 0, and if y < 0, then ẋ > 0. The level curves and direction fields are
given in Figure 5.6.
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Figure 5.6: A phase portrait for Example 3.

Example 4. Investigate the stability of the origin for the system

ẋ = y, ẏ = −x − y(1 − x2)

using the Lyapunov function V (x, y) = x2 + y2.

Solution. Now

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt
= 2x(y) + 2y(−x − y + yx2),

so

dV

dt
= 2y2(x2 − 1)

and V̇ ≤ 0 if |x| ≤ 1. Therefore, V̇ = 0 if either y = 0 or x = ±1. When y = 0,
ẋ = 0 and ẏ = −x, which means that a trajectory will move off the line y = 0
when x 
= 0. Hence, if a trajectory starts inside the circle of radius 1 centered at the
origin, then it will approach the origin asymptotically. The origin is asymptotically
stable.
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Definition 9. Given a Lyapunov functionV (x, y), the Lyapunov domain of stability
is defined by the region for which V̇ (x, y) < 0.

Example 5. Prove that the origin of the system

ẋ = −8x − xy2 − 3y3, ẏ = 2x2y + 2xy2

is asymptotically stable using the Lyapunov function V (x, y) = 2x2 + 3y2. De-
termine the Lyapunov domain of stability based on V (x, y).

Solution. Now

V̇ = 4x(−8x − xy2 − 3y3) + 6y(2x2y + 2xy2) = 8x2(y2 − 4)

and V̇ ≤ 0 if |y| ≤ 2. Therefore, V̇ = 0 if either x = 0 or y = ±2. When
x = 0, ẋ = −3y3 and ẏ = 0, which means that a trajectory will move off the line
x = 0 when y 
= 0. Now V̇ < 0 if |y| < 2. This implies that V̇ < 0 as long as
V (x, y) = 2x2 + 3y2 < 12. This region defines the domain of Lyapunov stability.
Therefore, if a trajectory lies wholly inside the ellipse 2x2 + 3y2 = 12, it will
move to the origin asymptotically. Hence, the origin is asymptotically stable.

An approximation of the true domain of stability for the origin of the system
in Example 5 is indicated in Figure 5.7(a). Notice that it is larger than the Lyapunov
domain of stability (Figure 5.7(b)) and that the x-axis is invariant.
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Figure 5.7: (a) A phase portrait for Example 5. (b) The domain of Lyapunov
stability.
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Example 6. A suitable Lyapunov function for the recurrent Hopfield network
modeled using the differential equations

ẋ = −x + 2

(
2

π
tan−1

(γπx

2

))
, ẏ = −y + 2

(
2

π
tan−1

(γπy

2

))

is given by

V (a1, a2) = −
(
a2

1 + a2
2

)
− 4

γπ2

(
ln
(

cos
(πa1

2

))
+ ln

(
cos

(πa2

2

)))
,

where

a1(t) = 2

π
tan−1

(γπx

2

)
and a2(t) = 2

π
tan−1

(γπy

2

)
.

Set γ = 0.7. A vector field plot for the recurrent Hopfield network is given in
Chapter 17. There are nine critical points; four are stable and five are unstable.

Plot the function V (a1, a2) and the corresponding contour and density plots
when |ai | ≤ 1, i = 1, 2. Continuous Hopfield models are discussed in Chapter 17.

Solution. Figure 5.8(a) shows the surface plot V (a1, a2) when γ = 0.7; there
is one local maximum and there are four local minima. Figures 5.8(b) and 5.8(c)
show the corresponding contour and density plots, respectively.

5.3 Maple Commands
See Section 2.6 for help with plotting phase portraits.

> # Program 5a: Simple nonlinear pendulum.

> # Figure 5.2(a): Phase portrait.

> restart:with(DEtools):with(plots):

> sys1:=diff(theta(t),t)=phi(t),diff(phi(t),t)=-sin(theta(t)):

> DEplot([sys1],[theta(t),phi(t)],t=-10..10,[[0,0.2,0.2],[0,1,0],

[0,Pi,0.1],[0,-Pi,0.1],[0,Pi,-0.1],[0,-Pi,-0.1],[0,2*Pi,0.2],

[0,-2*Pi,-0.2],[0,2*Pi,1],[0,-2*Pi,1],[0,0,3],[0,0,-3],[0,3*Pi,0.1],

[0,-3*Pi,0.1],[0,3*Pi,-0.1],[0,-3*Pi,-0.1],[0,4*Pi,0.2],[0,-4*Pi,-0.2],

[0,4*Pi,1],[0,-4*Pi,1]],stepsize=0.1,theta=-4*Pi..4*Pi,phi=-4..4,

arrows=SLIM,color=black,linecolor=blue,font=[TIMES,ROMAN,15],axes

=BOXED);

> # Program 5b: Simple nonlinear pendulum.

> # Figure 5.2(b): Hamiltonian surface.

> plot3d(yˆ2/2-cos(x),x=-4*Pi..4*Pi,y=-2..2);

> # Program 5c: Lyapunov function.

> # Figure 5.8(a): Surface plot.

> gama:=0.7:

> plot3d(-(xˆ2+yˆ2)-4*(ln(cos(1/2*Pi*x))+ln(cos(1/2*Pi*y)))/(gama*Piˆ2),
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Figure 5.8: [Maple] The Lyapunov function V (a1, a2) when γ = 0.7: (a) surface
plot; (b) contour plot; (c) density plot.

x=-1..1,y=-1..1,axes=BOXED,view=-0.2..0.1);

> # Figure 5.8(b): Contour plot.

> contourplot(-(xˆ2+yˆ2)-4*(ln(cos(1/2*Pi*x))+ln(cos(1/2*Pi*y)))/(gama

*Piˆ2),x=-1..1,y=-1..1,contours=[-0.1,-0.08,-0.04,0.01,0.02,0.1],grid

=[50,50]);

> # Figure 5.8(c): Density plot.

> densityplot(-(xˆ2+yˆ2)-4*(ln(cos(1/2*Pi*x))+ln(cos(1/2*Pi*y)))/(gama

*Piˆ2),x=-1..1,y=-1..1,grid=[128,128],axes=BOXED,style=PATCHNOGRID,

brightness=0.8,contrast=0.8);
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5.4 Exercises
1. Find the Hamiltonian of the system

ẋ = y, ẏ = x − x3

and sketch a phase portrait.

2. Given the Hamiltonian function H(x, y) = y2

2 + x2

2 − x4

4 , sketch a phase
portrait for the Hamiltonian system.

3. Plot a phase portrait for the damped pendulum equation

θ̈ + 0.15θ̇ + sin θ = 0

and describe what happens physically.

4. Plot a phase portrait of the system

ẋ = y(y2 − 1), ẏ = x(1 − x2).

5. Investigate the stability of the critical points at the origin for the systems:

(a) ẋ = −y − x3, ẏ = x − y3, using the Lyapunov function V (x, y) =
x2 + y2;

(b) ẋ = x(x − α), ẏ = y(y − β), using the Lyapunov function

V (x, y) =
(x

α

)2 +
(

y

β

)2

;

(c) ẋ = y ẏ = y − x3, using the Lyapunov function V (x, y) = ax4 +
bx2 + cxy + dy2.

6. Prove that the origin is a unique critical point of the system

ẋ = −1

2
y(1 + x) + x(1 − 4x2 − y2), ẏ = 2x(1 + x) + y(1 − 4x2 − y2).

Determine the stability of the origin using the Lyapunov function V (x, y) =
(1 − 4x2 − y2)2. Find �+(p) for each p ∈ �2. Plot a phase portrait.

7. Determine the values of a for which V (x, y) = x2 + ay2 is a Lyapunov
function for the system

ẋ = −x + y − x2 − y2 + xy2, ẏ = −y + xy − y2 − x2y.
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8. Determine the basin of attraction of the origin for the system

ẋ = x(x2 + y2 − 4) − y, ẏ = x + y(x2 + y2 − 4)

using the Lyapunov function V (x, y) = x2 + y2.

9. Plot a phase portrait for the system in Exercise 8.

10. Use the Lyapunov function V (x, y) = x4 + 2y2 − 10 to investigate the
invariant sets of the system

ẋ = y − x(x4 + 2y2 − 10), ẏ = −x3 − 3y5(x4 + 2y2 − 10).
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6
Bifurcation Theory

Aims and Objectives
• To introduce bifurcation theory in the plane.

• To introduce the notion of steady-state solution and investigate multistability
and bistability.

• To introduce the theory of normal forms.

On completion of this chapter, the reader should be able to

• describe how a phase portrait changes as a parameter changes;

• plot bifurcation diagrams;

• take transformations to obtain simple normal forms;

• interpret the bifurcation diagrams in terms of physical behavior.

If the behavior of a dynamical system changes suddenly as a parameter is
varied, then it is said to have undergone a bifurcation. At a point of bifurcation,
stability may be gained or lost. The study of bifurcations to chaos will be discussed
in later chapters.

It may be possible for a nonlinear system to have more than one steady-
state solution. For example, different initial conditions can lead to different stable
solutions. A system of this form is said to be multistable. Bifurcations of so-called
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large-amplitude limit cycles are discussed. By introducing a feedback mechanism
into the system it is possible to obtain hysteresis, or bistable behavior.

6.1 Bifurcations of Nonlinear Systems in the
Plane

Definition 1. A vector field f ∈ �2, which is continuously differentiable, is called
structurally stable if small perturbations in the system ẋ = f(x) leave the qualita-
tive behavior unchanged. If small perturbations cause a change in the qualitative
behavior of the system, then f is called structurally unstable.

For example, the Lotka–Volterra model (Example 2, Chapter 3) is structurally
unstable, whereas the Holling–Tanner model (Example 3, Chapter 3) is structurally
stable.

Peixoto’s Theorem in the Plane. Let the vector field f be continuously differen-
tiable on a compact set, say, D. Then f is structurally stable on D if and only if

• the number of critical points and limit cycles is finite and each is hyperbolic
(see Theorem 1 in Chapter 8);

• there are no trajectories connecting saddle points to saddle points.

Consider systems of the form

(6.1) ẋ = f(x, µ),

where x ∈ �2 and µ ∈ �. A value, say, µ0, for which the vector field f(x, µ0) is
not structurally stable is called a bifurcation value.

Four simple types of bifurcation, all at nonhyperbolic critical points, will
be given in order to illustrate how the qualitative behavior of a structurally unsta-
ble system of differential equations can change with respect to a parameter value.
Certain bifurcations can be classified by so-called normal forms. By finding suit-
able transformations it is possible to reduce systems to a normal form. Schematic
diagrams depicting four normal form bifurcations are illustrated below, and the
theory of normal forms is introduced in the next section along with some simple
examples.

6.1.I A Saddle-Node Bifurcation. Consider the system

(6.2) ẋ = µ − x2, ẏ = −y.

The critical points are found by solving the equations ẋ = ẏ = 0. There are (i)
zero, (ii) one, or (iii) two critical points, depending on the value of µ. Consider the
three cases separately.

Case (i). When µ < 0, there are no critical points in the plane and the flow
is from right to left since ẋ < 0. If y > 0, then ẏ < 0, and if y < 0, then ẏ > 0. A
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plot of the vector field is given in Figure 6.1(a). Note that the flow is invariant on
the x-axis.

Case (ii). When µ = 0, there is one critical point at the origin and it is non-
hyperbolic. The solution curves may be found by solving the differential equation

dy

dx
= ẏ

ẋ
= y

x2 .

This is a separable differential equation (see Chapter 1) and the solution is given

by |y| = Ke− 1
x , where K is a constant. Note that ẋ < 0 for all x. The vector field

is plotted in Figure 6.1(b). Note that the flow is invariant along both the x-axis and
the y-axis.

Case (iii). When µ > 0, there are two critical points at A = (
√

µ, 0) and
B = (−√

µ, 0). Linearize in the usual way. The Jacobian matrix is given by

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ =

( −2x 0
0 −1

)
,

where ẋ = P(x, y) and ẏ = Q(x, y). Therefore,

JA =
( −2

√
µ 0

0 −1

)

and the eigenvalues and eigenvectors are given by λ1 = −2
√

µ, (1, 0)T and λ2 =
−1, (0, 1)T . The critical point at A is thus a stable node and the stable manifolds
are orthogonal to one another.

The Jordan matrix for the critical point at B is

JB =
(

2
√

µ 0
0 −1

)

y

0 x

y

0 x

y

0 x

(a) (b) (c)

Figure 6.1: Vector field plots and manifolds when (a) µ < 0, (b) µ = 0, and (c)
µ > 0. There are no manifolds when µ < 0.
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0 μ

0

x

Figure 6.2: A schematic of a bifurcation diagram for system (6.2) showing a
saddle–node bifurcation. The solid curve depicts stable behavior and the dashed
curve depicts unstable behavior.

and the eigenvalues and eigenvectors are λ1 = 2
√

µ, (1, 0)T and λ2 = −1,
(0, 1)T . This critical point is a saddle point. The vector field and orthogonal stable
and unstable manifolds are plotted in Figure 6.1(c).

In summary, there are no critical points if µ is negative; there is one nonhy-
perbolic critical point at the origin if µ = 0 and there are two critical points—one
a saddle and the other a node—when µ is positive. The qualitative behavior of the
system changes as the parameter µ passes through the bifurcation value µ0 = 0.
The behavior of the critical points can be summarized on a bifurcation diagram as
depicted in Figure 6.2.

When µ < 0, there are no critical points, and as µ passes through zero, the
qualitative behavior changes and two critical points bifurcate from the origin. As
µ increases, the critical points move farther and farther apart. Note that the critical
points satisfy the equation µ = x2, hence the parabolic form of the bifurcation
curve. More examples of saddle–node bifurcations are given in Section 6.3.

6.1.II A Transcritical Bifurcation. Consider the system

(6.3) ẋ = µx − x2, ẏ = −y.

The critical points are found by solving the equations ẋ = ẏ = 0. There are
either one or two critical points depending on the value of the parameter µ. The
bifurcation value is again µ0 = 0. Consider the cases (i) µ < 0, (ii) µ = 0, and
(iii) µ > 0 separately.

Case (i). When µ < 0, there are two critical points: one at O = (0, 0) and
the other at A = (µ, 0). The origin is a stable node and A is a saddle point. A
vector field and manifolds are plotted in Figure 6.3(a).
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y

0 x x

y

0

y

0 x

(a) (b) (c)

Figure 6.3: Vector field plots and manifolds when (a) µ < 0, (b) µ = 0, and (c)
µ > 0.

Case (ii). When µ = 0, there is one nonhyperbolic critical point at the origin.
The solution curves satisfy the differential equation

dy

dx
= y

x2 ,

which has solutions |y| = Ke− 1
x , where K is a constant. A vector field and the

manifolds through the origin are shown in Figure 6.3(b).
Case (iii). When µ > 0, there are two critical points: one at O = (0, 0) and

the other at B = (µ, 0). The origin is now a saddle point and B is a stable node. A
vector field and manifolds are plotted in Figure 6.3(c).

The behavior of the critical points can be summarized on a bifurcation dia-
gram as depicted in Figure 6.4.

6.1.III A Pitchfork Bifurcation. Consider the system

(6.4) ẋ = µx − x3, ẏ = −y.

The critical points are found by solving the equations ẋ = ẏ = 0. There are
either one or three critical points depending on the value of the parameter µ. The
bifurcation value is again µ0 = 0. Consider the cases (i) µ < 0, (ii) µ = 0, and
(iii) µ > 0 separately.

Case (i). When µ < 0, there is one critical point at O = (0, 0). The origin
is a stable node. A vector field and the manifolds at the origin are shown in Figure
6.5(a).

Case (ii). When µ = 0, there is one nonhyperbolic critical point at the origin.
The solution curves satisfy the differential equation

dy

dx
= y

x3 ,



134 6. Bifurcation Theory

x = μ

μ0

0

x

Figure 6.4: A bifurcation diagram for system (6.3) showing a transcritical bifur-
cation. The solid line depicts stable behavior and the dashed line depicts unstable
behavior.

which has solutions |y| = Ke
− 1

2x2 , where K is a constant. A vector field is plotted
in Figure 6.5(a).

Case (iii). When µ > 0, there are three critical points at O = (0, 0), A =
(
√

µ, 0), and B = (−√
µ, 0). The origin is now a saddle point and A and B are

both stable nodes. A vector field and all of the stable and unstable manifolds are
plotted in Figure 6.5(b).

The behavior of the critical points can be summarized on a bifurcation dia-
gram as depicted in Figure 6.6.

6.1.IV A Hopf Bifurcation. Consider the system

(6.5) ṙ = r(µ − r2), θ̇ = −1.

The origin is the only critical point since θ̇ 
= 0. There are no limit cycles if (i)
µ ≤ 0 and one if (ii) µ > 0. Consider the two cases separately.

Case (i). When µ ≤ 0, the origin is a stable focus. Since θ̇ < 0, the flow is
clockwise. A phase portrait and vector field is shown in Figure 6.7(a).

Case (ii). When µ > 0, there is an unstable focus at the origin and a stable
limit cycle at r = √

µ since ṙ > 0 if 0 < r <
√

µ and ṙ < 0 if r >
√

µ. A phase
portrait is shown in Figure 6.7(b).

The qualitative behavior can be summarized on a bifurcation diagram as
shown in Figure 6.8. As the parameter µ passes through the bifurcation value
µ0 = 0, a limit cycle bifurcates from the origin. The amplitude of the limit cycle
grows as µ increases. Think of the origin blowing a smoke ring. An animation of
a Hopf bifurcation is given in the Maple worksheet and the program is listed in
Section 6.4.
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y

0 x

(a) (b)

Figure 6.5: Vector field plots and manifolds when (a) µ ≤ 0 and (b) µ > 0.

x

0

μ0

Figure 6.6: A schematic of a bifurcation diagram for system (6.4) showing a
pitchfork bifurcation. The solid curve depicts stable behavior and the dashed curve
depicts unstable behavior. Note the resemblance of the stable branches to a pitch-
fork.

6.2 Normal Forms
This section introduces some basic theory of normal forms without any rigorous jus-
tification. To keep the theory simple, the author has decided to illustrate the method
for planar systems only. Note that the theory can be applied to n-dimensional sys-
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Figure 6.7: [Maple animation] Phase portraits when (a) µ ≤ 0 and (b) µ > 0.

0

μ0

r

Figure 6.8: A schematic of a bifurcation diagram for system (6.5) showing a Hopf
bifurcation. The solid curve depicts stable behavior and the dashed curve depicts
unstable behavior.

tems in general; see references [1], [10], [11]. The theory of normal forms began
with Poincaré and Dulac and was later applied to Hamiltonian systems by Birkhoff.

The basic idea is to take nonlinear transformations of the nonlinear system
ẋ = X(x) to obtain a linear system u̇ = Ju, where X(0) = 0,

(
x, X, u ∈ �2

)
and J is a Jacobian matrix (see Section 2.4). The nonlinear terms are removed in
a sequential manner starting with the quadratic terms. Of course, it is not always
possible to obtain a linear system. In the majority of cases, one has to be satisfied
with a “simplest” possible form, or normal form, which may not be unique. Normal
forms are useful in the study of the local qualitative behavior of critical points and
bifurcation problems.

In order to keep the explanations simple, we will start by trying to eliminate
the quadratic terms of a planar system. Suppose that

(6.6) ẇ = Aw + H2(w) + O
(
|w|3

)
,
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where w ∈ �2, H2 is a homogeneous polynomial vector of degree 2, A is a 2 × 2
matrix, and O

(|w|3) denotes higher-order terms. Let w = P x; then system (6.6)
becomes

P ẋ = AP x + H2(P x) + O
(
|x|3

)
,

and multiplying by P −1,

(6.7) ẋ = Jx + h2(x) + O
(
|x|3

)
,

where P is such that J = P −1AP is a Jacobian matrix and h2(x) = P −1H2(P x)

is a homogeneous vector of degree 2. Take a transformation of the form

(6.8) x = u + f2(u) + O
(
|u|3

)
.

Substitute (6.8) into (6.7). Thus,

u̇ + Df2(u)u̇ + O
(
|u|2

)
u̇ = J

(
u + f2(u) + O

(
|u|3

))
+ h2

(
u + f2(u) + O

(
|u|3

))
+ O

(
|u|3

)
,

where D is the matrix of partial derivatives; an explicit example is given below.
Now h2 (u + f2(u)) = h2(u) + O

(|u|3) and u̇ = Ju + O
(|u|2); therefore,

(6.9) u̇ = Ju − (Df2(u)Ju − J f2(u)) + h2(u) + O
(
|u|3

)
.

Equation (6.9) makes it clear how one may remove the quadratic terms by a suitable
choice of the homogeneous quadratic polynomial f2. To eliminate the quadratic
terms, one must find solutions to the equation

(6.10) Df2(u)Ju − J f2(u) = h2(u).

The method of normal forms will now be illustrated by means of simple examples.

Example 1. Determine the nonlinear transformation which eliminates terms of
degree 2 from the planar system

(6.11) ẋ = λ1x +a20x
2 +a11xy +a02y

2, ẏ = λ2y +b20x
2 +b11xy +b02y

2,

where λ1,2 
= 0.

Solution. Now

J =
(

λ1 0
0 λ2

)
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and

h2(x) =
(

h12
h22

)
=

(
a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)
.

Equating coefficients of u2, uv, and v2, (6.10) can be written in the matrix form

MF = H

or, more explicitly,⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 2λ2 − λ1 0 0 0
0 0 0 2λ1 − λ2 0 0
0 0 0 0 λ1 0
0 0 0 0 0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

f20
f11
f02
g20
g11
g02

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a20
a11
a02
b20
b11
b02

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The inverse of matrix M exists if and only if all of the diagonal elements are
nonzero. The computations above may be checked with Maple.

Definition 2. The 2-tuple of eigenvalues (λ1, λ2) is said to be resonant of order 2
if at least one of the diagonal elements of M is zero.

Therefore, if none of the diagonal elements of M are zero,

f20 = a20

λ1
, f11 = a11

λ2
, f02 = a02

2λ2 − λ1
,

g20 = b20

2λ1 − λ2
, g11 = b11

λ1
, g02 = b02

λ2
,

and all of the quadratic terms can be eliminated from system (6.11), resulting in a
linear normal form u̇ = Ju.

Example 2. Find the change of coordinates of the form x = u + f2(u) which
transforms the system

(
ẋ

ẏ

)
=

(
5 0
0 3

)(
x

y

)
+

(
5x2

0

)
(6.12)

into the form (
u̇

v̇

)
=

(
5 0
0 3

)(
u

v

)
+ O

(
|u|3

)
.(6.13)

Transform the system to verify the results.



6.2. Normal Forms 139

Solution. Using the results from Example 1, f20 = 1 and

x = u + u2, y = v.

Differentiating with respect to time gives

ẋ = u̇ + 2uu̇, ẏ = v̇.

Therefore,

u̇ = ẋ

1 + 2u
= 5x + 5x2

1 + 2u
, v̇ = ẏ = 3y = 3v.

Now, taking a Taylor series expansion about u = 0,

1

1 + 2u
= 1 − 2u + 4u2 − 8u3 + O

(
u4

)
and

5x + 5x2 = 5(u + u2) + 5(u + u2)2 = 5u + 10u2 + 10u3 + O
(
u4

)
.

Therefore,

u̇ = 5u
(

1 + 2u + 2u2 + O
(
u3

)) (
1 − 2u + 4u2 + O

(
u3

))
, v̇ = 3v.

Finally, the linearized system is

u̇ = 5u + O
(
u3

)
, v̇ = 3v.

Note that, in general, any terms that cannot be eliminated are called resonance
terms, as the third example demonstrates.

Example 3. Determine the normal form of the following system with a nonhyper-
bolic critical point at the origin:(

ẋ

ẏ

)
=
(

λ1 0
0 0

)(
x

y

)
+

(
a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)

+ O
(
|x|3

)
,

(6.14)

where λ1 
= 0.

Solution. Referring to Example 1, in this case λ2 = 0, and the zero elements in
matrix M are in the second and sixth rows. Therefore, there are resonance terms,
auv and bv2, and the normal form of (6.14) is given by(

u̇

v̇

)
=

(
λ1 0
0 0

)(
u

v

)
+

(
auv

bv2

)
+ O

(
|u|3

)
.
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6.3 Multistability and Bistability
There are two types of Hopf bifurcation, one in which stable limit cycles are
created about an unstable critical point, called the supercritical Hopf bifurcation
(see Figure 6.8), and the other in which an unstable limit cycle is created about a
stable critical point, called the subcritical Hopf bifurcation (see Figure 6.9).

0

μ0

r

Figure 6.9: A schematic of a bifurcation diagram showing a subcritical Hopf
bifurcation. The solid curve depicts stable behavior and the dashed curve depicts
unstable behavior.

In the engineering literature, supercritical bifurcations are sometimes called
soft (or safe); the amplitude of the limit cycles build up gradually as the parameter,
µ in this case, is moved away from the bifurcation point. In contrast, subcritical
bifurcations are hard (or dangerous).A steady state, say at the origin, could become
unstable as a parameter varies and the nonzero solutions could tend to infinity. An
example of this type of behavior can be found in Figure 6.9. As µ passes through
zero from positive to negative values, the steady-state solution at the origin becomes
unstable and trajectories starting anywhere other than the origin would tend to
infinity.

It is also possible for limit cycles of finite amplitude to suddenly appear as
the parameter µ is varied. These limit cycles are known as large-amplitude limit
cycles. Examples of this type of behavior include surge oscillations in axial flow
compressors and wing rock oscillations in aircraft flight dynamics; see [7] for ex-
amples. Generally, unstable limit cycles are not observed in physical applications,
so it is only the stable large-amplitude limit cycles that are of interest. These limit
cycles can appear in one of two ways: Either there is a jump from a stable critical
point to a stable large-amplitude limit cycle or there is a jump from one stable
limit cycle to another of larger amplitude. These bifurcations are illustrated in the
following examples.

Large-Amplitude Limit Cycle Bifurcations. Consider the system

(6.15) ṙ = r(µ + r2 − r4), θ̇ = −1.

The origin is the only critical point since θ̇ 
= 0. This critical point is stable if
µ < 0 and unstable if µ > 0. The system undergoes a subcritical Hopf bifurcation
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at µ = 0, as in Figure 6.9. However, the new feature here is the stable large-
amplitude limit cycle which exists for, say, µ > µS . In the range µS < µ < 0,
there exist two different steady-state solutions; hence, system (6.15) is multistable
in this range. The choice of initial conditions determines which steady state will
be approached as t → ∞.

Definition 3. A dynamical system, say, (6.1), is said to be multistable if there is
more than one possible steady-state solution for a fixed value of the parameter µ.
The steady state obtained depends on the initial conditions.

The existence of multistable solutions allows for the possibility of bistability
(or hysteresis) as a parameter is varied. The two essential ingredients for bistable
behavior are nonlinearity and feedback. To create a bistable region there must
be some history in the system. Bistability is also discussed at some length in
Chapter 14. Suppose that the parameter µ is increased from some value less than
µS . The steady state remains at r = 0 until µ = 0, where the origin loses stability.
There is a sudden jump (a subcritical Hopf bifurcation) to the large-amplitude limit
cycle, and the steady state remains on this cycle as µ is increased further. If the
parameter µ is now decreased, then the steady state remains on the large-amplitude
limit cycle until µ = µS , where the steady state suddenly jumps back to the origin
(a saddle–node bifurcation) and remains there as µ is decreased further. In this way
a bistable region is obtained, as depicted in Figure 6.10.

Sμ 0 μ

r

0

Figure 6.10: A schematic of a bifurcation diagram depicting bistable behavior for
system (6.15).

Definition 4. A dynamical system, say, (6.1), has a bistable solution if there are
two steady states for a fixed parameter µ and the steady state obtained depends on
the history of the system.

Now consider the system

(6.16) ṙ = r(µ − 0.28r6 + r4 − r2). θ̇ = −1.

A bistable region may be obtained by increasing and then decreasing the parameter
µ as in the above example. A possible bifurcation diagram is given in Figure 6.11.
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In this case, there is a supercritical Hopf bifurcation at µ = 0 and saddle–node
bifurcations at µB and µA, respectively.

μ μ
A B0

0

r

μ

Figure 6.11: A schematic of a bifurcation diagram depicting bistable behavior for
system (6.16).

Jumps between different steady states have been observed in mechanical
systems. Parameters need to be chosen which avoid such large-amplitude limit
cycle bifurcations, and research is currently under way in this respect.

Bistability also has many positive applications in the real-world; for example,
nonlinear bistable optical resonators are investigated in Chapter 14. The author is
also currently investigating multistability and bistability in a wide range of disci-
plines.

6.4 Maple Commands
See Section 2.6 for help with plotting phase portraits.

> # Program 6a: Taylor series expansion.

> series(1/(1+2*u),u=0,4);

> # Program 6b: Animation of a simple curve.

> # See the web pages.

> restart:with(DEtools):with(plots):

> animate([r,r*((r-1)ˆ2-mu*r),r=-0.5..2],mu=-0.5..0.5,

numpoints=100,frames=100,color=red);

> # Program 6c: Hopf bifurcation animation.

> # See the web pages.

> deq1:=diff(x(t),t)=y(t)+mu*x(t)-x(t)*(y(t))ˆ2:

deq2:=diff(y(t),t)=mu*y(t)-x(t)-(y(t))ˆ3:

bifdeq1:=(parameter)->subs(mu=parameter,deq1):

bifdeq2:=(parameter)->subs(mu=parameter,deq2):

Hopf:=seq(DEplot({bifdeq1(’i/40-1’),bifdeq2(’i/40-1’)},

[x(t),y(t)],0..80,[[x(0)=0.5,y(0)=0.5]],y=-1..1,x=-1..1,

arrows=NONE,stepsize=0.1,linecolour=blue),i=0..48):
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Hopf:=subs(THICKNESS(3)=THICKNESS(0),[Hopf]):

display(Hopf,insequence=true);

6.5 Exercises
1. Consider the following one-parameter families of first-order differential

equations defined on �:

(a) ẋ = µ − x − e−x ;

(b) ẋ = x(µ + ex);

(c) ẋ = x − µx

1+x2 .

Determine the critical points and the bifurcation values, plot vector fields on
the line, and draw a bifurcation diagram in each case.

Use the animation in Maple to show how ẋ varies as µ increases from
−4 to +4, for each of the differential equations in (a)–(c).

2. Construct first-order ordinary differential equations having the following:

(a) three critical points (one stable and two unstable) when µ < 0, one
critical point when µ = 0, and three critical points (one unstable and
two stable) when µ > 0;

(b) two critical points (one stable and one unstable) for µ 
= 0 and one
critical point when µ = 0;

(c) one critical point if |µ| ≥ 1 and three critical points if |µ| < 1.

Draw a bifurcation diagram in each case.

3. A certain species of fish in a large lake is harvested. The differential equation
used to model the population, x(t) in hundreds of thousands, is given by

dx

dt
= x

(
1 − x

5

)
− hx

0.2 + x
.

Determine and classify the critical points and plot a bifurcation diagram.
How can the model be interpreted in physical terms?

4. Consider the following one-parameter systems of differential equations:

(a) ẋ = x, ẏ = µ − y4;

(b) ẋ = x2 − xµ2, ẏ = −y;

(c) ẋ = −x4 + 5µx2 − 4µ2, ẏ = −y.

Find the critical points, plot phase portraits, and sketch a bifurcation diagram
in each case.
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5. Consider the following one-parameter systems of differential equations in
polar form:

(a) ṙ = µr(r + µ)2, θ̇ = 1;

(b) ṙ = r(µ − r)(µ − 2r), θ̇ = −1;

(c) ṙ = r(µ2 − r2), θ̇ = 1.

Plot phase portraits for µ < 0, µ = 0, and µ > 0 in each case. Sketch the
corresponding bifurcation diagrams.

6. Determine the nonlinear transformation which eliminates terms of degree 3
from the planar system

ẋ = λ1x + a30x
3 + a21x

2y + a12xy2 + a03y
3,

ẏ = λ2y + b30x
3 + b21x

2y + b12xy2 + b03y
3,

where λ1,2 
= 0.

7. Show that the normal form of a nondegenerate Hopf singularity is given by(
u̇

v̇

)
=
(

0 −β

β 0

)(
u

v

)

+
(

au
(
u2 + v2

) − bv
(
u2 + v2

)
av

(
u2 + v2

) + bu
(
u2 + v2

) )
+ O

(
|u|5

)
,

where β > 0 and a 
= 0.

8. Plot bifurcation diagrams for the planar systems

(a) ṙ = r
(
µ − 0.2r6 + r4 − r2

)
, θ̇ = −1,

(b) ṙ = r
(
(r − 1)2 − µr

)
, θ̇ = 1.

Give a possible explanation as to why the type of bifurcation in part (b)
should be known as a fold bifurcation.

9. Show that the one parameter system

ẋ = y + µx − xy2, ẏ = µy − x − y3

undergoes a Hopf bifurcation at µ0 = 0. Plot phase portraits and sketch a
bifurcation diagram.

10. Thus far, the analysis has been restricted to bifurcations involving only one
parameter, and these are known as codimension-1 bifurcations. This example
illustrates what can happen when two parameters are varied, allowing so-
called codimension-2 bifurcations.
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The following two-parameter system of differential equations may be
used to model a simple laser:

ẋ = x(y − 1), ẏ = α + βy − xy.

Find and classify the critical points and sketch the phase portraits. Illustrate
the different types of behavior in the (α, β) plane and determine whether
any bifurcations occur.
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7
Three-Dimensional Autonomous
Systems and Chaos

Aims and Objectives
• To introduce first-order ODEs in three variables.

• To plot phase portraits and chaotic attractors.

• To identify chaos.

On completion of this chapter, the reader should be able to

• construct phase portraits for linear systems in three dimensions;

• use the Maple package to plot phase portraits and time series for nonlinear
systems;

• identify chaotic solutions;

• interpret the solutions to modeling problems taken from various scientific
disciplines, and, in particular, chemical kinetics, electric circuits, and mete-
orology.

Three-dimensional autonomous systems of differential equations are consid-
ered. Critical points and stability are discussed and the concept of chaos is intro-
duced. Examples include the following: the Lorenz equations, used as a simple
meteorological model and in the theory of lasers; Chua’s circuit, used in nonlin-
ear electronics and radiophysics; and the Belousov–Zhabotinski reaction, used in
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chemistry and biophysics. All of these systems can display highly complex be-
havior that can be interpreted from phase portrait analysis or Poincaré maps (see
Chapter 8).

Basic concepts are explained by means of example rather than mathematical
rigor. Strange or chaotic attractors are constructed using the Maple package, and
the reader is encouraged to investigate these systems through the exercises at the
end of the chapter. Chaos will also be discussed in other chapters of the book.

7.1 Linear Systems and Canonical Forms
Consider linear three-dimensional autonomous systems of the form

ẋ = a11x + a12y + a13z,

ẏ = a21x + a22y + a23z,(7.1)

ż = a31x + a32y + a33z,

where the aij are constants. The existence and uniqueness theorem (see Section
1.4) holds, which means that trajectories do not cross in three-dimensional space.
The real canonical forms for 3 × 3 matrices are

J1 =
⎛
⎝ λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ , J2 =

⎛
⎝ α −β 0

β α 0
0 0 λ3

⎞
⎠ ,

J3 =
⎛
⎝ λ1 1 0

0 λ1 0
0 0 λ2

⎞
⎠ , J4 =

⎛
⎝ λ1 1 0

0 λ1 1
0 0 λ1

⎞
⎠ .

Matrix J1 has three real eigenvalues; matrix J2 has a pair of complex eigen-
values; and matrices J3 and J4 have repeated eigenvalues. The type of phase portrait
is determined from each of these canonical forms.

Definition 1. Suppose that 0 ∈ �3 is a critical point of the system (7.1). Then the
stable and unstable manifolds of the critical point 0 are defined by

ES(0) = {x : �+(x) = 0}, EU(0) = {x : �−(x) = 0}.
Example 1. Solve the following system of differential equations, sketch a phase
portrait, and define the manifolds:

ẋ = x, ẏ = y, ż = −z.(7.2)

Solution. There is one critical point at the origin. Each differential equation is inte-
grable with solutions given by x(t) = C1e

t , y(t) = C2e
t , and z(t) = C3e

−t . The
eigenvalues and corresponding eigenvectors are λ1,2 = 1, (0, 1, 0)T , (1, 0, 0)T
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Figure 7.1: Phase plane portraits in the (a) xy and (b) xz planes. Note that (a) is
an unstable planar manifold.

and λ3 = −1, (0, 0, 1)T . System (7.2) may be uncoupled in any of the xy, xz, or
yz planes. Planar analysis gives an unstable singular node in the xy plane and cols
in each of the xz and yz planes. The phase plane portraits for two of the uncoupled
systems are given in Figure 7.1. If z > 0, ż < 0, and if z < 0, ż > 0. The z-axis
is a one-dimensional stable manifold since trajectories on this line are attracted to
the origin as t → +∞. The xy plane is a two-dimensional unstable manifold since
all trajectories in this plane are attracted to the origin as t → −∞.

Putting all of this together, any trajectories not lying on the manifolds flow
along “lamp shades” in three-dimensional space, as depicted in Figure 7.2.

Example 2. Given the linear transformations x = x1 − 2y1, y = −y1, and
z = −y1 + z1, show that the system

ẋ1 = −3x1 + 10y1, ẏ1 = −2x1 + 5y1, ż1 = −2x1 + 2y1 + 3z1

can be transformed into

ẋ = x − 2y, ẏ = 2x + y, ż = 3z.(7.3)

Make a sketch of some trajectories in xyz space.

Solution. The origin is the only critical point. Consider the transformations. Then

ẋ = ẋ1 − 2ẏ1 = (−3x1 + 10y1) − 2(−2x1 + 5y1) = x1 = x − 2y,

ẏ = −ẏ1 = −(−2x1 + 5y1) = 2x1 − 5y1 = 2x + y,
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Figure 7.2: Phase portrait for system (7.2). The manifolds are not shown here.

ż = −ẏ1 + ż1 = −(−2x1 + 5y1) + (−2x1 + 2y1 + 3z1) = 3(−y1 + z1) = 3z.

System (7.3) is already in canonical form, and the eigenvalues are λ1,2 = 1±i

and λ3 = 3; hence, the critical point is hyperbolic. The system can be uncoupled;
the critical point at the origin in the xy plane is an unstable focus. A phase plane
portrait is given in Figure 7.3.

Note that all trajectories spiral away from the origin, as depicted in Figure 7.4.
Since all trajectories tend to the origin as t → −∞, the whole phase space forms
an unstable manifold.

Example 3. Solve the following initial value problem:

(7.4) ẋ = z − x, ẏ = −y, ż = z − 17x + 16,

with x(0) = y(0) = z(0) = 0.8, and plot the solution curve in three-dimensional
space.

Solution. System (7.4) can be uncoupled. The differential equation ẏ = −y has
general solution y(t) = y0e

−t , and substituting y0 = 0.8 gives y(t) = 0.8e−t .
Now z = ẋ + x, and, therefore, the equation ż = z − 17x + 16 becomes

(ẍ + ẋ) = (ẋ + x) − 17x + 16,

which simplifies to

ẍ + 16x = 16.

Take Laplace transforms of both sides and insert the initial conditions to obtain

x(s) = 1

s
− 0.2s

s2 + 16
.
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Figure 7.3: Some trajectories in the xy plane.
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Figure 7.4: Phase portrait for system (7.3).

Take inverse transforms to get

x(t) = 1 − 0.2 cos(4t),

and, therefore,

z(t) = 1 + 0.8 sin(4t) − 0.2 cos(4t).
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Figure 7.5: The solution curve for the initial value problem in Example 3. The
trajectory ends up on an ellipse in the y = 0 plane.

The solution curve is plotted in Figure 7.5.

7.2 Nonlinear Systems and Stability
If the critical point of a three-dimensional autonomous system is hyperbolic, then
the linearization methods of Hartman can be applied (see [8] in Chapter 2). If the
critical point is not hyperbolic, then other methods need to be used.

Definition 2. Suppose that p ∈ �3 is a critical point of the nonlinear system
ẋ = f(x), where x ∈ �3. Then the stable and unstable manifolds of the critical
point p are defined by

WS(p) = {x : �+(x) = p}, WU(p) = {x : �−(x) = p}.
As for two-dimensional systems, three-dimensional systems can have stable and
unstable manifolds. These manifolds can be convoluted surfaces in three-dimen-
sional space. A survey of methods used for computing some manifolds is presented
in [1].

Theorem 1. Consider the differential equation

ẋ = f(x), x ∈ �n,

where f ∈ C1(E) and E is an open subset of �n containing the origin. Suppose
that f(0) = 0 and that the Jacobian matrix has n eigenvalues with nonzero real
part. Then, in a small neighborhood of x = 0, there exist stable and unstable
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manifolds WS and WU with the same dimensions nS and nU as the stable and
unstable manifolds (ES , EU ) of the linearized system

ẋ = Jx,

where WS and WU are tangent to ES and EU at x = 0.

A proof of this theorem can be found in Hartman’s book (see [8] in Chapter 2).

Definition 3. The center eigenspace, say, EC , is defined by the eigenvectors corre-
sponding to the eigenvalues with zero real part, and the center manifold, say, WC ,
is the invariant subspace which is tangent to the center eigenspace EC . In general,
the center manifold is not unique.

Theorem 2 (The Center Manifold Theorem). Let f ∈ Cr(E) (r ≥ 1), where
E is an open subset of �n containing the origin. If f(0) = 0 and the Jacobian
matrix has nS eigenvalues with negative real part, nU eigenvalues with positive
real part, and nC = n − nS − nU purely imaginary eigenvalues, then there exists
an nC-dimensional center manifold WC of class Cr which is tangent to the center
manifold EC of the linearized system.

To find out more about center manifolds, see Wiggins [4].

Example 4. Determine the stable, unstable, and center manifolds of the nonlinear
system

ẋ = x2, ẏ = −y, ż = −2z.

Solution. There is a unique critical point at the origin. This system is easily solved,
and it is not difficult to plot phase portraits for each of the uncoupled systems. The
solutions are x(t) = 1

C1−t
, y(t) = C2e

−t , and z(t) = C3e
−2t . The eigenvalues

and corresponding eigenvectors of the Jacobian matrix are λ1 = 0, (1, 0, 0)T ,
λ2 = −1, (0, 1, 0)T , and λ3 = −2, (0, 0, 1)T . In this case, WC = EC , the x-axis,
and the yz plane forms a two-dimensional stable manifold, where WS = ES . Note
that the center manifold is unique in this case, but it is not in general.

Example 5. Solve the nonlinear differential system

ẋ = −x, ẏ = −y + x2, ż = z + x2,

and determine the stable and unstable manifolds.

Solution. The point O = (0, 0, 0) is a unique critical point. Linearize by finding
the Jacobian matrix. Hence,

J =

⎛
⎜⎜⎝

∂P
∂x

∂P
∂y

∂P
∂z

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂R
∂x

∂R
∂y

∂R
∂z

⎞
⎟⎟⎠ ,
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where ẋ = P(x, y, z), ẏ = Q(x, y, z), and ż = R(x, y, z). Therefore,

JO =
⎛
⎝ −1 0 0

0 −1 0
0 0 1

⎞
⎠ ,

and the origin is an unstable critical point. Note that two of the eigenvalues are
negative. These give a two-dimensional stable manifold, which will now be defined.

The differential equation ẋ = −x is integrable and has solution x(t) =
C1e

−t . The other two differential equations are linear and have solutions y(t) =
C2e

−t + C2
1 (e−t − e−2t ) and z(t) = C3e

t + C2
1

3 (et − e−2t ). Now �+(x) = 0 if

and only if C3 + C2
1

3 = 0, where x ∈ �3, C1 = x(0), C2 = y(0), and C3 = z(0).
Therefore, the stable manifold is given by

WS =
{

x ∈ �3 : z = −x2

3

}
.

Using similar arguments, �−(x) = 0 if and only if C1 = C2 = 0. Hence, the
unstable manifold is given by

WU = {x ∈ �3 : x = y = 0}.
Note that the surface WS is tangent to the xy plane at the origin.

Example 6. Sketch a phase portrait for the system

(7.5) ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2), ż = −z.

Solution. Convert to cylindrical polar coordinates by setting x = r cos θ and
y = r sin θ . System (7.5) then becomes

ṙ = r(1 − r2), θ̇ = −1, ż = −z.

The origin is the only critical point. The system uncouples; in the xy plane, the
flow is clockwise and the origin is an unstable focus. If z > 0, then ż < 0, and if
z < 0, then ż > 0. If r = 1, then ṙ = 0. Trajectories spiral toward the xy plane and
onto the limit cycle, say, �1, of radius 1 centered at the origin. Hence, �+(x) = �1
if x 
= 0 and �1 is a stable limit cycle. A phase portrait is shown in Figure 7.6.

Lyapunov functions were introduced in Chapter 5 and were used to deter-
mine the stability of critical points for certain planar systems. The theory is easily
extended to the three-dimensional case, as the following examples demonstrate.
Once again, there is no systematic way to determine the Lyapunov functions, and
they are given in the question.

Example 7. Prove that the origin of the system

ẋ = −2y + yz, ẏ = x(1 − z), ż = xy

is stable but not asymptotically stable by using the Lyapunov function V (x, y, z) =
ax2 + by2 + cz2.
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Figure 7.6: Trajectories are attracted to a stable limit cycle in the xy plane.

Solution. Now

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt
+ ∂V

∂z

dz

dt
= 2(a − b + c)xyz + 2(b − 2a)xy.

If b = 2a and a = c > 0, then V (x, y, z) > 0 for all x 
= 0 and dV
dt

= 0. Thus,
the trajectories lie on the ellipsoids defined by x2 + 2y2 + z2 = r2. The origin is
thus stable but not asymptotically stable.

Example 8. Prove that the origin of the system

ẋ = −y − xy2 + z2 − x3, ẏ = x + z3 − y3, ż = −xz − x2z − yz2 − z5

is asymptotically stable by using the Lyapunov function V (x, y, z) = x2 +y2 +z2.

Solution. Now

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt
+ ∂V

∂z

dz

dt
= −2(x4 + y4 + x2z2 + x2y2 + z6).

Since dV
dt

< 0 for x, y, z 
= 0, the origin is asymptotically stable. In fact, the origin
is globally asymptotically stable since �+(x) = (0, 0, 0) for all x ∈ �3.

7.3 The Rössler System and Chaos
7.3.I The Rössler Attractor. In 1976, Otto E. Rössler [18] constructed the fol-
lowing three-dimensional system of differential equations:

ẋ = −(y + z), ẏ = x + ay, ż = b + xz − cz,(7.6)
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where a, b, and c are all constants. Note that the only nonlinear term appears in the
ż equation and is quadratic. As the parameters vary, this simple system can display
a wide range of behavior. Set a = b = 0.2, for example, and vary the parameter
c. The dynamics of the system can be investigated using the Maple package. Four
examples are considered here. Transitional trajectories have been omitted to avoid
confusion. The initial conditions are x(0) = y(0) = z(0) = 1 in all cases.

Definition 4. A limit cycle in three-dimensional space is called a period-n cycle
if x(t) = x(t + nT ) for some minimum constant T called the period. Note that n

can be determined by the number of distinct amplitudes in a time series plot.

When c = 2.3, there is a period-one limit cycle which can be plotted in
three-dimensional space. Figure 7.7(a) shows the limit cycle in phase space, and
the periodic behavior with respect to x(t) is shown in Figure 7.7(b).
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Figure 7.7: (a) A limit cycle for system (7.5) when c = 2.3. (b) Period-one
behavior for x(t).

When c = 3.3, there is period-two behavior. Figure 7.8(a) shows the closed
orbit in phase space, and the periodic behavior is shown in Figure 7.8(b). Notice
that there are two distinct amplitudes in Figure 7.8(b). This periodic behavior can
be easily detected using Poincaré maps (see Chapter 8).

When c = 5.3, there is period-three behavior. Figure 7.9(a) shows the closed
orbit in three-dimensional space, and the periodic behavior is shown in Figure
7.9(b). Note that there are three distinct amplitudes in Figure 7.9(b).

When c = 6.3, the system displays what appears to be random behavior.
This type of behavior has been labeled deterministic chaos. A system is called
deterministic if the behavior of the system is determined from the time evolution
equations and the initial conditions alone, as in the case of the Rössler system.
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Figure 7.8: (a) A period-two limit cycle for system (7.6) when c = 3.3. (b)
Period-two behavior for x(t).
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Figure 7.9: (a) A period-three limit cycle for system (7.6) when c = 5.3. (b)
Period-three behavior for x(t).

Nondeterministic chaos arises when there are no underlying equations, as in the
United Kingdom national lottery, or there is noisy or random input. This text will
be concerned with deterministic chaos only, and it will be referred to simply as
chaos from henceforth.
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7.3.II Chaos. Chaos is a multifaceted phenomenon that is not easily classified or
identified. There is no universally accepted definition for chaos, but the following
characteristics are nearly always displayed by the solutions of chaotic systems:

1. long-term aperiodic (nonperiodic) behavior;

2. sensitivity to initial conditions;

3. fractal structure.

Consider each of these items independently. Note, however, that a chaotic
system generally displays all three types of behavior listed above.

Case 1. It is very difficult to distinguish between aperiodic behavior and periodic
behavior with a very long period. For example, it is possible for a chaotic system
to have a periodic solution of period 10100.

Case 2. A simple method used to test whether a system is chaotic is to check for
sensitivity to initial conditions. Figure 7.10(a) shows the trajectory in phase space
and Figure 7.10(b) illustrates how the system is sensitive to the choice of initial
conditions.

Definition 5. An attractor is a minimal closed invariant set that attracts nearby
trajectories lying in the domain of stability (or basin of attraction) onto it.

Definition 6. A strange attractor (chaotic attractor, fractal attractor) is an attrac-
tor that exhibits sensitivity to initial conditions.

Definition 7. The spectrum of Lyapunov exponents are quantities that characterize
the rate of separation of infinitesimally close trajectories.

An example of a strange attractor is shown in Figure 7.10(a). Another method
for establishing whether a system is chaotic is to use the Lyapunov exponents
(see Chapter 12 for examples in the discrete case). A system is chaotic if at least
one of the Lyapunov exponents is positive. This implies that two trajectories that
start close to each other on the strange attractor will diverge as time increases,
as depicted in Figure 7.10(b). Note that an n-dimensional system will have n

different Lyapunov exponents. Think of an infinitesimal sphere of perturbed initial
conditions for a three-dimensional system.As time increases, the sphere will evolve
into an infinitesimal ellipsoid. If d0 is the initial radius of the sphere, then dj =
d0e

λj (j = 1, 2, 3) define the axes of the ellipsoid. The following results are well
known for three-dimensional systems. For chaotic attractors, λ1 > 0, λ2 = 0,
and λ3 < 0; for single critical points, λ1 < 0, λ2 < 0, and λ3 < 0; for limit
cycles, λ1 = 0, λ2 < 0, and λ3 < 0; and for a 2-torus, λ1 = 0, λ2 = 0,
and λ3 < 0. A comparison of different methods for computing the Lyapunov
exponents is given in [13]. A Maple program can be downloaded from the Maple
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Figure 7.10: [Maple] (a) The chaotic attractor for system (7.6) when c = 6.3.
(b) Time series plot of x(t) showing sensitivity to initial conditions; the initial
conditions for one time series are x(0) = y(0) = z(0) = 1, and for the other, they
are x(0) = 1.01, y(0) = z(0) = 1. Use different colors when plotting in Maple.

Application Center for computing the Lyapunov exponents of the Lorenz attractor;
the method is described in [16]. The Lyapunov exponents for the Lorenz system
given in the next section were computed to be L1 = 0.9022, L2 = 0.0003, and
L3 = −14.5691 for 10,000 iterations. One interesting feature of strange attractors
is that it is sometimes possible to reconstruct the attractor from time series data
alone; see [7], for example. Many papers have also been published on the detection
of chaos from time series data ([3], [9], [12], [14], and [16]), where the underlying
equations may not be required.

Gottwald and Melbourne [3] described a new test for deterministic chaos.
Their diagnostic is the real-valued function

p(t) =
∫ t

0
φ(x(s)) cos(ω0s)ds,

where φ is an observable on the dynamics x(t) and ω0 
= 0 is a constant. They set

K = lim
t→∞

log M(t)

log(t)
,

where M is the mean-square displacement for p(t). Typically, K = 0 signifying
regular dynamics, or K = 1 indicating chaotic dynamics. They state that the test
works well for both continuous and discrete systems.
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Case 3. The solution curves to chaotic systems generally display fractal structure
(see Chapter 15). The structure of the strange attractors for general n-dimensional
systems may be complicated and difficult to observe clearly. To overcome these
problems, Poincaré maps, which exist in lower-dimensional spaces, can be used,
as in Chapter 8.

7.4 The Lorenz Equations, Chua’s Circuit, and the
Belousov–Zhabotinski Reaction

Note that most nonlinear systems display steady-state behavior most of the time, so
it is possible to predict, for example, the weather, motion of the planets, spread of
an epidemic, motion of a driven pendulum, or beat of the human heart. However,
nonlinear systems can also display chaotic behavior where prediction becomes
impossible.

There are many examples of applications of three-dimensional autonomous
systems to the real world. These systems obey the existence and uniqueness theorem
from Chapter 2, but the dynamics can be much more complicated than in the two-
dimensional case. The following examples taken from meteorology, electric circuit
theory, and chemical kinetics have been widely investigated in recent years. There
are more examples in the exercises at the end of the chapter.

7.4.I The Lorenz Equations. In 1963, the MIT meteorologist Edward Lorenz
[19] constructed a highly simplified model of a convecting fluid. This simple model
also displays a wide variety of behavior, and for some parameter values, it is chaotic.
The equations can be used to model convective flow up through the center and down
on the sides of hexagonal columns. The system is given by

ẋ = σ(y − x), ẏ = rx − y − xz, ż = xy − bz,(7.7)

where x measures the rate of convective overturning, y measures the horizontal
temperature variation, z measures the vertical temperature variation,σ is the Prandtl
number, r is the Rayleigh number, and b is a scaling factor. The Prandtl number is
related to the fluid viscosity, and the Rayleigh number is related to the temperature
difference between the top and bottom of the column. Lorenz studied the system
when σ = 10 and b = 8

3 .
The system can be considered to be a highly simplified model for the weather.

Indeed, satellite photographs from space show hexagonal patterns on undisturbed
desert floors. The astonishing conclusion derived by Lorenz is now widely labeled
the butterfly effect. Even this very simple model of the weather can display chaotic
phenomena. Since the system is sensitive to initial conditions, small changes to
wind speed (convective overturning), for example, generated by the flap of a but-
terfly’s wings, can change the outcome of the results considerably. For example, a
butterfly flapping its wings in Britain could cause or prevent a hurricane from oc-
curring in the Bahamas in the not-so-distant future. Of course, there are many more
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variables that should be considered when trying to model weather systems, and this
simplified model illustrates some of the problems with which meteorologists have
to deal.

Some simple properties of the Lorenz equations will now be listed, and all
of these characteristics can be investigated with the aid of the Maple package:

1. System (7.7) has natural symmetry (x, y, z) → (−x, −y, z).

2. The z-axis is invariant.

3. The flow is volume contracting since divX = −(σ + b + 1) < 0, where X
is the vector field.

4. If 0 < r < 1, the origin is the only critical point, and it is a global attractor.

5. At r = 1, there is a bifurcation, and there are two more critical points at
C1 = (

√
b(r − 1),

√
b(r − 1),r−1) and C2 = (−√

b(r − 1),−√
b(r − 1),

r − 1).

6. At r = rH ≈ 13.93, there is a homoclinic bifurcation (see Chapter 9) and
the system enters a state of transient chaos.

7. At r ≈ 24.06, a strange attractor is formed.

8. If 1 < r < rO , where rO ≈ 24.74, the origin is unstable and C1 and C2 are
both stable.

9. At r > rO , C1 and C2 lose their stability by absorbing an unstable limit
cycle in a subcritical Hopf bifurcation.

For more details, see the work of Sparrow [17] or most textbooks on nonlinear
dynamics. Most of the above results can be observed by plotting phase portraits or
time series using the Maple package. A strange attractor is shown in Figure 7.11.

The trajectories wind around the two critical points C1 and C2 in an apparently
random unpredictable manner. The strange attractor has the following properties:

• The trajectory is aperiodic (or not periodic).

• The trajectory remains on the attractor forever (the attractor is invariant).

• The general form is independent of initial conditions.

• The sequence of windings is sensitive to initial conditions.

• The attractor has fractal structure.

A variation on the Lorenz model has recently been discovered by Guanrong
Chen and Tetsushi Ueta (see Figure 7.12). The equations are

ẋ = σ(y − x), ẏ = (r − σ)x + ry − xz, ż = xy − bz.(7.8)
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Figure 7.11: A strange attractor for the Lorenz system when σ = 10, b = 8
3 , and

r = 28.
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Figure 7.12: A strange attractor for system (7.8) when σ = 35, b = 3, and r = 28.

7.4.II Chua’s Circuit. Elementary electric circuit theory was introduced in
Chapter 1. In the mid-1980s Chua modeled a circuit that was a simple oscilla-
tor exhibiting a variety of bifurcation and chaotic phenomena. The circuit diagram
is given in Figure 7.13. The circuit equations are given by

dv1

dt
= (G(v2 − v1) − f (v1))

C1
,

dv2

dt
= (G(v1 − v2) + i)

C2
,

di

dt
= −v2

L
,

where v1, v2, and i are the voltages across C1 and C2 and the current through L,
respectively. The characteristic of the nonlinear resistor NR is given by

f (v1) = Gbv1 + 0.5(Ga − Gb)
(|v1 + Bp| − |v1 − Bp|) ,
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Figure 7.13: Chua’s electric circuit.

where G = 1/R. Typical parameters used are C1 = 10.1 nF, C2 = 101 nF, L =
20.8 mH, R = 1420 �, r = 63.8 �, Ga = −0.865 mS, Gb = −0.519 mS, and
Bp = 1.85 V .

In the simple case, Chua’s equations can be written in the following dimen-
sionless form:

ẋ = a(y − x − g(x)), ẏ = x − y + z, ż = −by,(7.9)

where a and b are dimensionless parameters. The function g(x) has the form

g(x) = cx + 1

2
(d − c) (|x + 1| − |x − 1|) ,

where c and d are constants.
Chua’s circuit is investigated in some detail in [11] and exhibits many in-

teresting phenomena, including period-doubling cascades to chaos, intermittency
routes to chaos, and quasiperiodic routes to chaos. For certain parameter values,
the solutions lie on a double-scroll attractor, as shown in Figure 7.14.

The dynamics are more complicated than those appearing in either the Rössler
or Lorenz attractors. Chua’s circuit has proved to be a very suitable subject for study
since laboratory experiments produce results which match very well with the results
of the mathematical model. Recently, the author and Borresen [5] have shown the
existence of a bistable cycle for Chua’s electric circuit for the first time. Power
spectra for Chua’s circuit simulations are used to show how the qualitative nature
of the solutions depends on the history of the system.

Zhou et al. [2] report on a new chaotic circuit that consists of only a few
capacitors, operational amplifiers, and resistors.

7.4.III The Belousov–Zhabotinski Reaction. Periodic chemical reactions such
as the Landolt clock and the Belousov–Zhabotinski reaction provide wonderful
examples of relaxation oscillations in science (see [8], [10], [15]). They are of-
ten demonstrated in chemistry classes or used to astound the public at university
open days. The first experiment was conducted by the Russian biochemist Boris
Belousov in the 1950s, and the results were not confirmed until as late as 1968 by
Zhabotinski.

Consider the following recipe for a Belousov periodic chemical reaction.
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Figure 7.14: [Maple] Chua’s double-scroll attractor. Phase portrait for system (7.9)
when a = 15, b = 25.58, c = −5/7, and d = −8/7. The initial conditions are
x(0) = −1.6, y(0) = 0, and z(0) = 1.6.

Ingredients.

• Solution A: Malonic acid, 15.6 g/L.

• Solution B: Potassium bromate, 41.75 g/L and potassium bromide, 0.006 g/L.

• Solution C: Cerium IV sulfate, 3.23 g/L in 6 M sulfuric acid.

• Solution D: Ferroin indicator.

Procedure.Add 20 mL of solutionA and 10 mL of solution B to a mixture of 10 mL
of solution C and 1 mL of solution D. Stir continuously at room temperature. The
mixture remains blue for about 10 minutes and then begins to oscillate blue-green-
pink and back again with a period of approximately 2 minutes.

This reaction is often demonstrated by chemistry departments during univer-
sity open days and is always a popular attraction.

Following the methods of Field and Noyes (see [15]), the chemical rate
equations for an oscillating Belousov–Zhabotinski reaction are frequently written
as

BrO−
3 + Br− → HBrO2 + HOBr, Rate = k1[BrO−

3 ][Br−]
HBrO2 + Br− → 2HOBr, Rate = k2[HBrO2][Br−]
BrO−

3 + HBrO2 → 2HBrO2 + 2MOX, Rate = k3[BrO−
3 ][HBrO2]

2HBrO2 → BrO−
3 + HOBr, Rate = k4[HBrO2]2

OS + MOX → 1
2CBr−, Rate = k5[OS][MOX]

where OS represents all oxidizable organic species and C is a constant. Note that in
the third equation, species HBrO2 stimulates its own production, a process called
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autocatalysis. The reaction rate equations for the concentrations of intermediate
species x = [HBrO2], y = [Br−], and z = [MOX] are

ẋ = k1ay − k2xy + k3ax − 2k4x
2,

ẏ = −k1ay − k2xy + 1

2
Ck5bz,

ż = 2k3ax − k5bz,(7.10)

where a = [BrO−
3 ] and b = [OS] are assumed to be constant. Taking the transfor-

mations

X = 2k4x

k5a
, Y = k2y

k3a
, Z = k5k4bz

(k3a)2 , τ = k5bt,

system (7.10) becomes

dX

dτ
= qY − XY + X(1 − X)

ε1
,

dY

dτ
= −qY − XY + CZ

ε2
,

dZ

dτ
= X − Z,(7.11)

where ε1 = k5b
k3a

, ε2 = 2k5k4b
k2k3a

, and q = 2k1k4
k2k3

. Next, one assumes that ε2 � 1 so

that dY
dτ

is large unless the numerator −qY − XY + CZ is also small. Assume that

Y = Y ∗ = CZ

q + X

at all times, so the bromide concentration Y = [Br−] is in a steady state compared
to X. In this way, a three-dimensional system of differential equations is reduced
to a two-dimensional system of autonomous ODEs:

ε1
dX

dτ
= X(1 − X) − X − q

X + q
CZ,

dZ

dτ
= X − Z.(7.12)

For certain parameter values, system (7.12) has a limit cycle that represents
an oscillating Belousov–Zhabotinski chemical reaction, as in Figure 7.15.

Example 9. Find and classify the critical points of system (7.12) when ε1 =
0.05, q = 0.01, and C = 1. Plot a phase portrait in the first quadrant.

Solution. There are two critical points: one at the origin and the other at A ≈
(0.1365, 0.1365). The Jacobian matrix is given by

J =
(

1
ε1

(
1 − 2X − Z

X+q
+ (X−q)Z

(X+q)2

)
1
ε1

(
q−X
X+q

)
1 −1

)
.
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Figure 7.15: A limit cycle in the XZ plane for system (7.12) when ε1 = 0.05, q =
0.01, and C = 1.

It is not difficult to show that the origin is a saddle point and that A is an unstable
node. A phase portrait showing periodic oscillations is given in Figure 7.15.

The period of the limit cycle in Figure 7.15 is approximately 3.4. The tra-
jectory moves quickly along the right and left branches of the limit cycle (up and
down) and moves relatively slowly in the horizontal direction. This accounts for
the rapid color changes and time spans between these changes.

It is important to note that chemical reactions are distinct from many other
types of dynamical system in that closed chemical reactions cannot oscillate about
their chemical equilibrium state. This problem is easily surmounted by exchang-
ing mass or introducing a flow with the chemical reaction and its surroundings.
For example, the Belousov–Zhabotinski reaction used during university open days
is stirred constantly and mass is exchanged. It is also possible for the Belousov–
Zhabotinski reaction to display chaotic phenomena; see [8], for example. Multi-
stable and bistable chemical reactions are also discussed in [10]. In these cases,
there is an inflow and outflow of certain species and more than one steady state
can coexist.

7.5 Maple Commands
Note that you can rotate the three-dimensional phase portraits by left-clicking and
moving the mouse. Lorenz chaotic attractors are dealt with in Chapters 16 and 18.
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> # Program 7a: Eigenvalues and eigenvectors.

> # Exercise 1.

> restart:with(LinearAlgebra):with(DEtools):with(plots):

A:=Matrix([[1,0,-4],[0,5,4],[-4,4,3]]):

Eigenvectors(A);

> # Program 7b: Three-dimensional phase portrait.

> # Figure 7.10(a): The Rossler chaotic attractor.

> a:=0.2:b:=0.2:c:=6.3:

Rossler:=diff(x(t),t)=-y(t)-z(t),diff(y(t),t)=x(t)+a*y(t),

diff(z(t),t)=b+x(t)*z(t)-c*z(t):

DEplot3d({Rossler},{x(t),y(t),z(t)},t=50..200,[[x(0)=1,y(0)=1,z(0)=1]],

scene=[x(t),y(t),z(t)],stepsize=0.05,thickness=1,linecolor=blue,

font=[TIMES,ROMAN,15],orientation=[40,120]);

> # Program 7c: Time series.

> # Figure 7.10(b): Shows sensitivity to initial conditions.

> p1:=DEplot({Rossler},{x(t),y(t),z(t)},t=50..100,[[x(0)=1,y(0)=1,z(0)

=1]],scene=[t,x(t)],stepsize=0.05,thickness=1,linestyle=1,linecolor

=black):

p2:=DEplot({Rossler},{x(t),y(t),z(t)},t=50..100,[[x(0)=1.01,y(0)=1,

z(0)=1]],scene=[t,x(t)],stepsize=0.05,thickness=1,linestyle=1,

linecolor=red):

display({p1,p2},font=[TIMES,ROMAN,15]);

> # Program 7d: Three-dimensional phase portrait.

> # Figure 7.14: Chua’s double scroll chaotic attractor.

> a:=15.6:b:=25.58:c:=-5/7:d:=-8/7:

Chua:=diff(x(t),t)=a*(y(t)-x(t)-(c*x(t)+0.5*(d-c)*

(abs(x(t)+1)-abs(x(t)-1)))),diff(y(t),t)=x(t)-y(t)+z(t),

diff(z(t),t)=-b*y(t):

p1:=DEplot3d({Chua},{x(t),y(t),z(t)},t=0..80,[[x(0)=1.6,y(0)=0,z(0)

=-1.6],[x(0)=-1.6,y(0)=0,z(0)=1.6]],scene=[x(t),y(t),z(t)],stepsize

=0.05,thickness=1,linecolor=blue):

display(p1,font=[TIMES,ROMAN,15]);

> # Program 7e: A stiff system of ODEs.

> # Exercise 6: The Chapman cycle.

> M:=9*10ˆ(17):

k1:=3*10ˆ(-12):k2:=1.22*10ˆ(-33):k3:=5.5*10ˆ(-4):k4:=6.86*10ˆ(-16):

deq1:=diff(x(t),t)=2*k1*y(t)+k3*z(t)-k2*x(t)*y(t)*M-k4*x(t)*z(t),

diff(y(t),t)=k3*z(t)+2*k4*x(t)*z(t)-k1*y(t)-k2*x(t)*y(t)*M,

diff(z(t),t)=k2*x(t)*y(t)*M-k3*z(t)-k4*x(t)*z(t):

ics:=x(0)=4*10ˆ(16),y(0)=2*10ˆ(16),z(0)=2*10ˆ(16):

dsol1:=dsolve({deq1,ics},numeric,range=0..10ˆ8,stiff=true):

evalf(dsol1(10ˆ8),5);
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7.6 Exercises
1. Find the eigenvalues and eigenvectors of the matrix

A =
⎛
⎝ 1 0 −4

0 5 4
−4 4 3

⎞
⎠ .

Hence, show that the system ẋ = Ax can be transformed into u̇ = Ju, where

J =
⎛
⎝ 3 0 0

0 −3 0
0 0 9

⎞
⎠ .

Sketch a phase portrait for the system u̇ = Ju.

2. Classify the critical point at the origin for the system

ẋ = x + 2z, ẏ = y − 3z, ż = 2y + z.

3. Find and classify the critical points of the system

ẋ = x − y, ẏ = y + y2, ż = x − z.

4. Consider the system

ẋ = −x + (λ − x)y, ẏ = x − (λ − x)y − y + 2z, ż = y

2
− z,

where λ ≥ 0 is a constant. Show that the first quadrant is positively invariant
and that the plane x + y + 2z = constant is invariant. Find λ+(p) for p in
the first quadrant given that there are no periodic orbits there.

5. (a) Prove that the origin of the system

ẋ = −x−y2+xz−x3, ẏ = −y+z2+xy−y3, ż = −z+x2+yz−z3

is globally asymptotically stable.

(b) Determine the domain of stability for the system

ẋ = −ax + xyz, ẏ = −by + xyz, ż = −cz + xyz.

6. The chemical rate equations for the Chapman cycle modeling the production
of ozone are

O2 + hv → O + O, Rate = k1,

O2 + O + M → O3 + M, Rate = k2,

O3 + hv → O2 + O, Rate = k3,

O + O3 → O2 + O2, Rate = k4,
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where O is a singlet, O2 is oxygen, and O3 is ozone. The reaction rate
equations for species x = [O], y = [O2], and z = [O3] are

ẋ = 2k1y + k3z − k2xy[M] − k4xz,

ẏ = k3z + 2k4xz − k1y − k2xy[M],
ż = k2xy[M] − k3z − k4xz.

This is a stiff system of differential equations. Many differential equa-
tions applied in chemical kinetics are stiff. Given that [M] = 9e17, k1 =
3e−12, k2 = 1.22e−33, k3 = 5.5e−4, k4 = 6.86e−16, x(0) = 4e16,
y(0) = 2e16, and z(0) = 2e16, show that the steady state reached is
[O] = 4.6806e7, [O2] = 6.999e16, and [O3] = 6.5396e12.

7. A three-dimensional Lotka–Volterra model is given by

ẋ = x(1−2x+y−5z), ẏ = y(1−5x−2y−z), ż = z(1+x−3y−2z).

Prove that there is a critical point in the first quadrant at P( 1
14 , 3

14 , 3
14 ). Plot

possible trajectories and show that there is a solution plane x + y + z = 1
2 .

Interpret the results in terms of species behavior.

8. Assume that a given population consists of susceptibles (S), exposed (E),
infectives (I), and recovered/immune (R) individuals. Suppose that S +E +
I + R = 1 for all time. A seasonally driven epidemic model is given by

Ṡ = µ(1 − S) − βSI, Ė = βSI − (µ + α)E, İ = αE − (µ + γ )I,

where β = contact rate, α−1 = mean latency period, γ −1 = mean infectivity
period, and µ−1 = mean life span. The seasonality is introduced by assuming
that β = B(1 + A cos(2πt)), where B ≥ 0 and 0 ≤ A ≤ 1. Plot phase
portraits when A = 0.18, α = 35.84, γ = 100, µ = 0.02, and B = 1800 for
the initial conditions: (i) S(0) = 0.065, E(0) = 0.00075, I (0) = 0.00025
and (ii) S(0) = 0.038, E(0) = 3.27 × 10−8, I (0) = 1.35 × 10−8. Interpret
the results for the populations.

9. Plot some time series data for the Lorenz system (7.7) when σ = 10, b = 8
3 ,

and 166 ≤ r ≤ 167. When r = 166.2, the solution shows intermittent
behavior; there are occasional chaotic bursts in between what looks like
periodic behavior.

10. Consider system (7.12) given in the text to model the periodic behavior of the
Belousov–Zhabotinski reaction. By considering the isoclines and gradients
of the vector fields, explain what happens to the solution curves for ε1 � 1
and appropriate values of q and C.
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8
Poincaré Maps and Nonautonomous
Systems in the Plane

Aims and Objectives
• To introduce the theory of Poincaré maps.

• To compare periodic and quasiperiodic behavior.

• To introduce Hamiltonian systems with two degrees of freedom.

• To use Poincaré maps to investigate a nonautonomous system of differential
equations.

On completion of this chapter, the reader should be able to

• understand the basic theory of Poincaré maps;

• plot return maps for certain systems;

• use the Poincaré map as a tool for studying stability and bifurcations.

Poincaré maps are introduced via example using two-dimensional autono-
mous systems of differential equations. They are used extensively to transform
complicated behavior in the phase space to discrete maps in a lower-dimensional
space. Unfortunately, this nearly always results in numerical work since analytic
solutions can rarely be found.

A periodically forced nonautonomous system of differential equations is in-
troduced, and Poincaré maps are used to determine stability and plot bifurcation
diagrams.
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Discrete maps will be discussed in Chapters 11–17.

8.1 Poincaré Maps
When plotting the solutions to some nonlinear problems, the phase space can
become overcrowded and the underlying structure may become obscured. To over-
come these difficulties, a basic tool was proposed by Henri Poincaré [8] at the end
of the 19th century. As a simple introduction to the theory of Poincaré (or first
return) maps, consider two-dimensional autonomous systems of the form

ẋ = P(x, y), ẏ = Q(x, y).(8.1)

Suppose that there is a curve or straight-line segment, say, �, that is crossed
transversely (no trajectories are tangential to �). Then � is called a Poincaré
section. Consider a point r0 lying on �. As shown in Figure 8.1, follow the flow
of the trajectory until it next meets � at a point r1. This point is known as the first
return of the discrete Poincaré map P : � → �, defined by

rn+1 = P(rn),

where rn maps to rn+1 and all points lie on �. Finding the function P is equivalent to
solving the differential equations (8.1). Unfortunately, this is very seldom possible,
and one must rely on numerical solvers to make any progress.

0
r
0

r
1

Σ

Figure 8.1: A first return on a Poincaré section, �.

Definition 1. A point r∗ that satisfies the equation P(r∗) = r∗ is called a fixed
point of period one.

To illustrate the method for finding Poincaré maps, consider the following two
simple examples (Examples 1 and 2), for which P may be determined explicitly.

Example 1. By considering the line segment � = {(x, y) ∈ �2 : 0 ≤ x ≤ 1, y =
0}, find the Poincaré map for the system

ẋ = −y − x

√
x2 + y2, ẏ = x − y

√
x2 + y2(8.2)

and list the first eight returns on � given that r0 = 1.
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Solution. Convert to polar coordinates. System (8.2) then becomes

ṙ = −r2, θ̇ = 1.(8.3)

The origin is a stable focus and the flow is counterclockwise. A phase portrait
showing the solution curve for this system is given in Figure 8.2.
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Figure 8.2: A trajectory starting at (1, 0) (0 ≤ t ≤ 40) for system (8.3).

The set of equations (8.3) can be solved using the initial conditions r(0) = 1
and θ(0) = 0. The solutions are given by

r(t) = 1

1 + t
, θ(t) = t.

Trajectories flow around the origin with a period of 2π . Substituting for t , the flow
is defined by

r(t) = 1

1 + θ(t)
.

The flow is counterclockwise, and the required successive returns occur when
θ = 2π, 4π, . . . . A map defining these points is given by

rn = 1

1 + 2nπ

on �, where n = 1, 2, . . . . As n → ∞, the sequence of points moves toward the
fixed point at the origin as expected. Now

rn+1 = 1

1 + 2(n + 1)π
.

Elementary algebra is used to determine the Poincaré return map P, which may be
expressed as

rn+1 = P(rn) = rn

1 + 2πrn
.
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The first eight returns on the line segment � occur at the points r0 = 1, r1 =
0.13730, r2 = 0.07371, r3 = 0.05038, r4 = 0.03827, r5 = 0.03085, r6 =
0.02584, r7 = 0.02223, and r8 = 0.01951, to five decimal places, respectively.
Check these results for yourself using the Maple program at the end of the chapter.

Example 2. Use a one-dimensional map on the line segment � = {(x, y) ∈ �2 :
0 ≤ x < ∞, y = 0} to determine the stability of the limit cycle in the following
system:

ẋ = −y + x(1 −
√

x2 + y2), ẏ = x + y(1 −
√

x2 + y2).(8.4)

Solution. Convert to polar coordinates; then system (8.4) becomes

ṙ = r(1 − r), θ̇ = 1.(8.5)

The origin is an unstable focus, and there is a limit cycle, say, �, of radius 1 centered
at the origin. A phase portrait showing two trajectories is given in Figure 8.3.
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Figure 8.3: Two trajectories for system (8.5), one starting at (2, 0) and the other
at (0.01, 0).

System (8.5) can be solved since both differential equations are separable.
The solutions are given by

r(t) = 1

1 + Ce−t
, θ(t) = t + θ0,

where C and θ0 are constants. Trajectories flow around the origin with a period of
2π .

Suppose that a trajectory starts outside � on �, say, at r0 = 2. The solutions
are then given by

r(t) = 1

1 − 1
2e−t

, θ(t) = t.
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Therefore, a return map can be expressed as

rn = 1

1 − 1
2e−2nπ

,

where n is a natural number. If, however, a trajectory starts inside � at, say, r0 = 1
2 ,

then

r(t) = 1

1 + e−t
, θ(t) = t,

and a return map is given by

rn = 1

1 + e−2nπ
.

In both cases, rn → 1 as n → ∞. The limit cycle is stable on both sides, and the
limit cycle � is hyperbolic stable since rn → 1 as n → ∞ for any initial point
apart from the origin. The following theorem gives a better method for determining
the stability of a limit cycle.

Theorem 1. Define the characteristic multiplier M to be

M = dP
dr

∣∣∣∣
r∗

,

where r∗ is a fixed point of the Poincaré map P corresponding to a limit cycle, say,
�. Then

1. if |M| < 1, � is a hyperbolic stable limit cycle;

2. if |M| > 1, � is a hyperbolic unstable limit cycle;

3. if |M| = 1, and d2P
dr2 
= 0, then the limit cycle is stable on one side and

unstable on the other; in this case, � is called a semistable limit cycle.

Theorem 1 is sometimes referred to as the derivative of the Poincaré map
test.

Definition 2. A fixed point of period one, say, r∗, of a Poincaré map P is called
hyperbolic if |M| 
= 1.

Example 3. Use Theorem 1 to determine the stability of the limit cycle in Exam-
ple 2.

Solution. Consider system (8.5). The return map along � is given by

(8.6) rn = 1

1 + Ce−2nπ
,
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where C is a constant. Therefore,

(8.7) rn+1 = 1

1 + Ce−2(n+1)π
.

Substituting C = 1−rn
rne2nπ from (8.6) into (8.7) gives the Poincaré map

rn+1 = P(rn) = rn

rn + (1 − rn)e−2π
.

The Poincaré map has two fixed points: one at zero (a trivial fixed point) and the
other at r∗ = 1, corresponding to the critical point at the origin and the limit cycle
�, respectively. Now

dP
dr

= e−2π

(r + (1 − r)e−2π )2 ,

using elementary calculus, and

dP
dr

∣∣∣∣
r∗=1

= e−2π ≈ 0.00187 < 1,

and so the limit cycle � is hyperbolic attracting.

Definition 3. A point r∗ that satisfies the equation Pm(r∗) = r∗ is called a fixed
point of period m.

Example 4. Consider the circle map P defined by

rn+1 = P(rn) = e
i2π

q1
q2 rn,

which maps points on the unit circle to itself. Assuming that r0 = 1, plot iterates
when

(a) q1 = 0, q2 = 1,

(b) q1 = 1, q2 = 2,

(c) q1 = 2, q2 = 3,

(d) q1 = 1, q2 = √
2.

Explain the results displayed in Figures 8.4(a)–8.4(d).

Solution. In Figure 8.4(a), there is a fixed point of period one since rn+1 = P = rn.
Similarly, in Figures 8.4(b)–8.4(c), there are fixed points of periods two and three
since rn+2 = P2 = rn and rn+3 = P3 = rn.
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Figure 8.4: Fixed points of periods (a) one, (b) two, (c) three, and (d) quasiperiodic

behavior for the circle map rn+1 = P(rn) = e
i2π

q1
q2 rn.

For Figure 8.4(d), q1 and q2 are rationally independent since c1q1 + c2q2 =
0 with c1 and c2 integers is satisfied only by c1 = c2 = 0. This implies that
the points on the circle map are never repeated and there is no periodic motion.
(There is no integer c such that rn+c = Pc = rn.) Figure 8.4(d) shows the first
1000 iterates of this mapping. If one were to complete the number of iterations to
infinity, then a closed circle would be formed as new points approach other points
arbitrarily closely an infinite number of times. This new type of qualitative behavior
is known as quasiperiodicity. Note that one has to be careful when distinguishing
between quasiperiodic points and points that have very high periods. For example,
Figure 8.4(d) could be depicting a very high-period trajectory. Systems displaying
quasiperiodicity will be discussed in the next section.
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8.2 Hamiltonian Systems with Two Degrees of
Freedom

Hamiltonian systems with one degree of freedom were introduced in Chapter 5.
These systems can always be integrated completely. Hamiltonian (or conservative)
systems with two degrees of freedom will be discussed briefly in this section, but
the reader should note that it is possible to consider Hamiltonian systems with
N—or even an infinite number of—degrees of freedom.

In general, the set of Hamiltonian systems with two degrees of freedom are not
completely integrable, and those that are form a very restricted but important subset.
The trajectories of these systems lie in four-dimensional space, but the overall
structure can be determined by plotting Poincaré maps. It is known that completely
integrable systems display remarkable smooth regular behavior in all parts of the
phase space, which is in stark contrast to what happens with nonintegrable systems,
which can display a wide variety of phenomena including chaotic behavior. A brief
definition of integrability is given below, and Hamiltonian systems with two degrees
of freedom will now be defined.

Definition 4. A Hamiltonian system with two degrees of freedom is defined by

(8.8) ṗ1 = −∂H

∂q1
, q̇1 = ∂H

∂p1
, ṗ2 = −∂H

∂q2
, q̇2 = ∂H

∂p2
,

where H is the Hamiltonian of the system. In physical applications, q1 and q2 are
generalized coordinates and p1 and p2 represent a generalized momentum. The
Hamiltonian may be expressed as

H(p, q) = KE(p, q) + PE(q),

where KE and PE are the kinetic and potential energies, respectively.

Definition 5. The Hamiltonian system with two degrees of freedom given by (8.8)
is integrable if the system has two integrals, say F1 and F2, such that

{F1, H } = 0, {F2, H } = 0, {F1, F2} = 0,

where F1 and F2 are functionally independent and {, } are the so-called Poisson
brackets defined by

{F1, F2} = ∂F1

∂q
∂F2

∂p
− ∂F1

∂p
∂F2

∂q
.

Some of the dynamics involved in these type of systems will now be described
using some simple examples.
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Example 5. Consider the Hamiltonian system with two degrees of freedom giv-
en by

(8.9) H(p, q) = ω1

2
(p2

1 + q2
1 ) + ω2

2
(p2

2 + q2
2 ),

which is integrable with integrals given by F1 = p2
1 + q2

1 and F2 = p2
2 + q2

2 .
This system can be used to model a linear harmonic oscillator with two degrees of
freedom.

Plot three-dimensional and two-dimensional projections of the Poincaré sur-
face-of-section (the Poincaré section is a surface) for system (8.9) given the fol-
lowing set of initial conditions for p1, p2 and q1, q2:

(i) ω1 = ω2 = 2 with the initial conditions t = 0, p1 = 0.5, p2 = 1.5, q1 =
0.5, and q2 = 0;

(ii) ω1 = 8, ω2 = 3 with the initial conditions t = 0, p1 = 0.5, p2 = 1.5, q1 =
0.3, and q2 = 0;

(iii) ω1 = √
2, ω2 = 1 with the initial conditions t = 0, p1 = 0.5, p2 =

1.5, q1 = 0.3, and q2 = 0.

Solution. A Maple program is listed in Section 8.4 (see Figure 8.5).

The results may be interpreted as follows: In cases (i) and (ii), the solutions
are periodic, and in case (iii), the solution is quasiperiodic. For the quasiperiodic
solution, a closed curve will be formed in the p1q1 plane as the number of iterations
goes to infinity. The quasiperiodic cycle never closes on itself; however, the motion
is not chaotic. The trajectories are confined to flow on invariant tori (see Figure
8.5(e), which shows a section of the torus).

Example 6. Consider the Hénon–Heiles Hamiltonian system (which may be used
as a simple model of the motion of a star inside a galaxy) given by

H(p, q) = 1

2
(p2

1 + q2
1 + p2

2 + q2
2 ) + q2

1q2 − q3
2

3
.

This Hamiltonian represents two simple harmonic oscillators (see Example 5(i))
coupled with a cubic term. The Hamiltonian in this case is nonintegrable. Plot three-
dimensional and two-dimensional projections of the Poincaré surface-of-section
of the Hamiltonian system for the set of initial conditions given by t = 0, p1 =
0.06, p2 = 0.1, q1 = −0.2, and q2 = −0.2.

Solution. See Figure 8.6.

A rich variety of behavior is observed in the Poincaré section for the Hénon–
Heiles system as the energy levels increase. For example, Figure 8.7 shows how the
Poincaré section changes as the energy level increases from 0.041666 to 0.166666.
As the energy levels increase, the closed orbits, representing quasiperiodic behav-
ior, are replaced by irregular patterns, and eventually the Poincaré plane seems to be
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Figure 8.5: [Maple] Projections of the Poincaré surface-of-section for system (8.9)
when (a)–(b) ω1 = ω2 = 2, (c)–(d) ω1 = 8 and ω2 = 3, and (e)–(f) ω1 = √

2
and ω2 = 1. The initial conditions are listed in (i)–(iii) of Example 5. These are
projections of a four-dimensional system.

swamped by chaos. In fact, there is a famous theorem due to Kolmogorov, Arnold,
and Moser, now known as the KAM theorem. Interested readers are referred to the
book by Guckenheimer and Holmes [6].
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Figure 8.6: A three-dimensional and two-dimensional projection of the Poincaré
surface-of-section for the Hénon–Heiles system with the initial conditions t =
0, p1 = 0.06, p2 = 0.1, q1 = −0.2, and q2 = −0.2. Note that the energy level is
equal to 0.041466 in this case.

Theorem 2. Suppose that a Hamiltonian system with two degrees of freedom is
given by H = H0 + εH1, where ε is a small parameter, H0 is integrable, and
H1 makes H nonintegrable. The quasiperiodic cycles (also known as KAM tori),
which exist for ε = 0, will also exist for 0 < ε � 1 but will be deformed by the
perturbation. The KAM tori dissolve one by one as ε increases and points begin
to scatter around the Poincaré plane. A similar pattern of behavior can be seen in
Figure 8.7.

8.3 Nonautonomous Systems in the Plane
The existence and uniqueness theorems introduced in Chapter 1 hold for au-
tonomous systems of differential equations. This means that trajectories cannot
cross, and the Poincaré–Bendixson theorem implies that there is no chaos in two
dimensions. However, chaos can be displayed in three-dimensional autonomous
systems as shown in Chapter 7, where various strange attractors were plotted.
This section is concerned with nonautonomous (or forced) systems of differential
equations of the form

ẍ = f (x, ẋ, t),



184 8. Poincaré Maps and Nonautonomous Systems in the Plane

H = .5555500000e – 1  

.30

.20

.10

0

-.10

-.20

.30.20.100-.10-.20-.30

.30

.20

.10

0

-.10

-.20

.20.100-.10-.20

H = .4166600000e – 1 

.50

.40

.30

.20

.10

0

-.10

-.20

-.30

.40.200-.20-.40

.40

.30

.20

.10

0

-.10

-.20

-.30

.30.20.100-.10-.20-.30

H = .1250000000  H = .8333300000e – 1 

(a) (b)

.80

.60

.40

.20

0

-.20

-.40

.40.200-.20-.40

.60

.40

.20

0

-.20

-.40
.40.200-.20-.40

H = .1428570000  H = .1666660000  

(c)

Figure 8.7: The Poincaré transversal plane for the Hénon-Heiles Hamiltonian
system with different energy levels. The smoothness of the curves in both (p,q)
planes is related to the integrability of the system.

where the function f depends explicitly on t . There is no longer uniqueness of
the solutions, and trajectories can cross in the phase plane. For certain parameter
values, the phase portrait can become entangled with trajectories crisscrossing
one another. By introducing a Poincaré map, it becomes possible to observe the
underlying structure of the complicated flow.
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As a particular example, consider the Duffing equation given by

ẍ + kẋ + (x3 − x) = � cos(ωt),

where, in physical models, k is a damping coefficient, � represents a driving am-
plitude, and ω is the frequency of the driving force. Let ẋ = y; then the Duffing
equation can be written as a system of the form

(8.10) ẋ = y, ẏ = x − ky − x3 + � cos(ωt).

The equations may be used to model a periodically forced pendulum that has a cubic
restoring force, where x(t) represents displacement and ẋ represents the speed of
a simple mass; see Figure 8.8. The equation can also be used to model periodically
forced resistor–inductor–capacitor circuits with nonlinear circuit elements, where
x(t) would represent the charge oscillating in the circuit at time t .

cos(ωΓ t)

x

Figure 8.8: A periodically driven pendulum.

Systems of the form (8.10) have been studied extensively in terms of, for
example, stability, harmonic solutions, subharmonic solutions, transients, chaotic
output, chaotic control, and Poincaré maps. The work here will be restricted to
considering the Poincaré maps and bifurcation diagrams for system (8.10), as the
driving amplitude � varies when k = 0.3 and ω = 1.25 are fixed.

It is interesting to apply quasiperiodic forcing to nonlinear systems, as in
[5], where nonchaotic attractors appear for a quaiperiodically forced van der Pol
system.

Any periodically forced nonautonomous differential equation can be repre-
sented in terms of an autonomous flow in a torus. To achieve this transformation,
simply introduce a third variable θ = ωt . System (8.10) then becomes a three-
dimensional autonomous system given by

ẋ = y, ẏ = x − ky − x3 + � cos(θ), θ̇ = ω.(8.11)
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P P1 0 0θ = θ

Figure 8.9: The first return of a point P0 to P1 in the plane θ = θ0. The trajectories
flow inside a torus in three-dimensional space.

A flow in this state space corresponds to a trajectory flowing around a torus
with period 2π

ω
. This naturally leads to a Poincaré mapping of a θ = θ0 plane to

itself, as depicted in Figure 8.9.
When � = 0, system (8.10) has three critical points at M = (−1, 0), N =

(1, 0), and O = (0, 0). The points M and N are stable foci when 0 < k < 2
√

2
and O is a saddle point. As � is increased from zero, stable periodic cycles appear
from M and N and there are bifurcations of subharmonic oscillations. The system
can also display chaotic behavior for certain values of �.

Only periodic cycles initially appearing from the critical point N will be
considered here. A gallery of phase portraits along with their respective Poincaré
return maps are presented in Figures 8.10 and 8.11.

When � = 0.2, there is a period-one harmonic solution of period 2π
ω

, which
is depicted as a closed curve in the phase plane and as a single point in the θ = 0
plane (see Figure 8.10(a)). When � = 0.3, a period-two cycle of period 4π

ω
appears;

this is a subharmonic of order 1
2 . A period-two cycle is represented by two points

in the Poincaré section (see Figure 8.10(b)); note that the trajectory crosses itself
in this case. A period-four cycle of period 8π

ω
is present when � = 0.31 (see Figure

8.10(c)). When � = 0.37, there is a period-five cycle that is centered at O and also
surrounds both M and N (see Figure 8.11(a)). When � = 0.5, the system becomes
chaotic. A single trajectory plotted in the phase plane intersects itself many times,
and the portrait soon becomes very messy. However, if one plots the first returns
on the Poincaré section, then a strange attractor is formed that demonstrates some
underlying structure (see Figure 8.11(b)). It must be noted that the chaotic attractor
will have different forms on different Poincaré sections. This strange (or chaotic)
attractor has fractal structure. At � = 0.8, there is once more a stable period-one
solution. However, it is now centered at O (see Figure 8.11(c)).

Figures 8.10 and 8.11 display some of the behavior possible for the Duffing
equation for specific values of the parameter �. Of course, it would be far better to
summarize all of the possible behaviors as the parameter � varies on one diagram.
To achieve this goal, one must plot bifurcation diagrams. There are basically two
ways in which bifurcation diagrams may be produced; one involves a feedback
mechanism and the other does not. The first and second iterative methods are
described in Section 14.5.
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Figure 8.10: [Maple] A gallery of phase portraits and Poincaré maps for system
(8.10) when k = 0.3 and ω = 1.25: (a) � = 0.2 (forced period one), (b) � = 0.3
(a period-two subharmonic), and (c) � = 0.31 (a period-four subharmonic).

Figure 8.12 shows a bifurcation diagram for system (8.10) for forcing am-
plitudes in the range 0 < � < 0.4 near the critical point at N . The vertical axis
labeled r represents the distance of the point in the Poincaré map from the origin
(r = √

x2 + y2). The first iterative method (see Section 14.5) was employed in this
case. For each value of �, the last 10 of 50 iterates were plotted, and the step length
used in this case was 0.01. The initial values were chosen close to one of the exist-
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Figure 8.11: A gallery of phase portraits and Poincaré maps for system (8.10) when
k = 0.3 and ω = 1.25: (a) � = 0.37 (a period-five subharmonic), (b) � = 0.5
(chaos), 4000 points are plotted, and (c) � = 0.8 (forced period one).

ing periodic solutions. The diagram shows period-one behavior for 0 < � < 0.28,
approximately. For values of � > 0.28, there is period-two behavior, and then the
results become a little obscure.

Figure 8.13 shows a bifurcation diagram produced using the second iterative
method (see Section 14.5). The parameter � is increased from zero to 0.4 and
then decreased from � = 0.4 back to zero. There were 2000 iterates used as �
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Figure 8.12: A bifurcation diagram for system (8.10) produced using the first
iterative method without feedback.

was increased and then decreased. The solid curve lying approximately between
0 ≤ � < 0.32 represents steady-state behavior. As � increases beyond 0.32,
the system goes through a chaotic regime and returns to periodic behavior before
� = 0.4. As the parameter � is decreased, the system returns through the periodic
paths, enters a chaotic region, and period undoubles back to the steady-state solution
at � ≈ 0.28. Note that on the ramp-up part of the iterative scheme, the steady
state overshoots into the region where the system is of period two, roughly where
0.28 < � < 0.32.

Figure 8.14 shows a bifurcation diagram produced as � is increased from
zero to 0.45 and then decreased back to zero. Once more, as � is increased, there is
steady-state behavior for � lying between zero and approximately 0.32. However,
as the parameter is decreased, a different steady state is produced and a large
bistable region is present.

Note that there will also be steady-state behavior and bifurcations associ-
ated with the critical point at M . The flow near saddle fixed points will now be
considered.

Homoclinic and Heteroclinic Bifurcations. Some of the theory involved in the
bifurcations to chaos for flows and maps is a result of the behavior of the stable
and unstable manifolds of saddle points. Discrete maps will be discussed in some
detail in later chapters. The stable and unstable manifolds can form homoclinic
and heteroclinic orbits as a parameter is varied. Homoclinic and heteroclinic orbits
were introduced in Chapter 5, and the stable and unstable branches of saddle points
will be discussed in more detail in Chapter 16. It is also possible for the stable and



190 8. Poincaré Maps and Nonautonomous Systems in the Plane

Γ
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

0.1 0.2 0.3 0.4 

Figure 8.13: A bifurcation diagram for system (8.10) produced using the second
iterative method with feedback.
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Figure 8.14: A bifurcation diagram for system (8.10) produced using the second
iterative method. There is a large bistable region; one steady state associated with
the critical point at M and the other associated with N .

unstable manifolds to approach one another and eventually intersect as a parameter
varies. When this occurs, there is said to be a homoclinic (or heteroclinic) inter-
section. The intersection is homoclinic if a stable/unstable branch of a saddle point
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Figure 8.15: The mappings H and H−1.

crosses the unstable/stable branch of the same saddle point, and it is heteroclinic if
the stable/unstable branches of one saddle point cross the unstable/stable branches
of a different saddle point. If the stable and unstable branches of saddle points
intersect once, then it is known that there must be an infinite number of intersec-
tions, and a so-called homoclinic (or heteroclinic) tangle is formed. In 1967, Smale
[7] provided an elegant geometric construction to describe this phenomenon. The
mapping function used is now known as the Smale horseshoe map. Consider a
small square, say, S, of initial points surrounding a saddle point in the Poincaré
section. Under the iterative scheme, this square of points will be stretched out in
the direction of the unstable manifold and compressed along the stable branch of
the saddle point. In Smale’s construction, a square of initial points is stretched in
one direction and then compressed in an orthogonal direction. Suppose that the
map is given by H : S → �2 and that H contracts S in the horizontal direction,
expands S in the vertical direction, and then folds the rectangle back onto itself
to form a horseshoe, as in Figure 8.15. Similarly, the action of H−1 on S is also
given in Figure 8.15. The result of the intersection of these first two sets is given
in Figure 8.16.

As this process is iterated to infinity, points fall into the area contained by the
original square in smaller and smaller subareas. The result is an invariant Cantor set
(see Chapter 15) that contains a countable set of periodic orbits and an uncountable
set of bounded nonperiodic orbits.

The Smale–Birkhoff theorem states that homoclinic tangles guarantee that a
dynamical system will display horseshoe dynamics. For more details, the reader is
directed once again to the excellent textbook of Guckenheimer and Holmes [6].
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(S) (S)HS
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H

Figure 8.16: The first stage of the Smale horseshoe map.

8.4 Maple Commands
Type poincare and procedurelist in the Maple Help Browser for explanations of
what these commands do in the following programs.

The command lines in Programs 8b, 8c, and 8d are quite complex. The author
recommends that new users download the worksheet from the Maple Application
Center. Program 8d uses the second iterative method (see Chapter 14) to produce a
bifurcation diagram and a hysteresis loop appears, as can be seen in Figure 20.2(a)
in the Solutions to Exercises chapter of the book.

> # Program 8a: Solving ODEs.

> # Example 1: Poincare return maps.

> restart:with(DEtools):with(plots):

> sys:=diff(r(t),t)+r(t)ˆ2:

returns:=dsolve({sys,r(0)=1},numeric,range=0..16*Pi):

evalf(seq(r[i]=returns(2*i*Pi),i=1..8),5);

> # Program 8b: Hamiltonian with two-degrees of freedom.

> # Figure 8.5: Examples 5.

> omega1:=2:omega2:=2:H:=(omega1/2)*(p1ˆ2+q1ˆ2)+(omega2/2)*(p2ˆ2+q2ˆ2):

hamilton_eqs(H);

> poincare(H,t=-100..100,{[0,0.5,1.5,0.5,0]},stepsize=0.1,iterations=4,

scene=[p1=-1.5..1.5,q1=-1.5..1.5,q2=-1.5..1.5],3);

> poincare(H,t=0..30,{[0,0.5,1.5,0.5,0]},stepsize=0.005,iterations=3,

scene=[p1,q1]);

> # Figure 8.6: Example 6.

> H:=(p1ˆ2+q1ˆ2+p2ˆ2+q2ˆ2)/2+q1ˆ2*q2-q2ˆ3/3:

> poincare(H,t=-100..100,{[0,0.06,0.1,-0.2,-0.2]},stepsize=0.1,

iterations=4,scene=[p1=-0.3..0.3,q1=-0.3..0.3,q2=-0.3..0.3],3);

> poincare(H,t=-100..100,{[0,0.06,0.1,-0.2,-0.2]},stepsize=0.1,
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iterations=4,3);

> # Program 8c: Phase portrait of a nonautonomous system.

> # Figure 8.11: First returns.

> Gamma:=0.5:omega:=1.25:k:=0.3:

DEplot([diff(x(t),t)=y(t),diff(y(t),t)=x(t)-k*y(t)-(x(t))ˆ3+

Gamma*cos(omega*t)],[x(t),y(t)],t=0..300,[[x(0)=1,y(0)=0.5]],

x=-2..2,y=-2..2,stepsize=0.1,linecolor=blue,thickness=1);

> ff:=dsolve({diff(x(t),t)=y(t),diff(y(t),t)=x(t)-k*y(t)-(x(t))ˆ3+

Gamma*cos(omega*t),x(0)=1,y(0)=0.5},{x(t),y(t)},

type=numeric,method=classical,output=procedurelist):

pt:=array(0..10000):x1:=array(0..10000):y1:=array(0..10000):

imax:=4000:

for i from 0 to imax do

x1[i]:=eval(x(t),ff(i*2*Pi/omega)):

y1[i]:=eval(y(t),ff(i*2*Pi/omega)):

end do:

pts:=[[x1[n],y1[n]]$n=10..imax]:

# Plot the points on the Poincare section.

pointplot(pts,style=point,symbol=solidcircle,symbolsize=4,color=blue,

axes=BOXED,scaling=CONSTRAINED,font=[TIMES,ROMAN,15]);

> # Program 8d: Bifurcation diagram.

> Figure 8.14

> G:=array(0..10000):Y:=array(0..10000):

x1:=array(0..10000):y1:=array(0..10000):r:=array(0..10000):

# Increase Gamma from 0 to 0.45.

jmax:=1000:k:=0.3:omega:=1.25:step:=0.00045:interval:=jmax*step:

x1[0]:=1:y1[0]:=0:r[0]:=1:

for j from 0 to jmax do

G[j]:=step*j:

ff :=

dsolve({diff(x(t),t)=y(t),diff(y(t),t)=-k*y(t)+x(t)-(x(t))ˆ3+

G[j]*cos(omega*t),x(0)=x1[j],y(0)=y1[j]},{x(t),y(t)},type=numeric,

output=procedurelist);

x1[j+1]:=eval(x(t),ff(2*Pi/omega)):

y1[j+1]:=eval(y(t),ff(2*Pi/omega)):

r[j+1]:=sqrt((x1[j+1])ˆ2+(y1[j+1])ˆ2):

end do:

l:=[[G[n],r[n]] $n=0..jmax]:

P1:=plot(l, x=0..interval,y=0..2,

style=point,symbol=solidcircle,symbolsize=4,color=blue):

# Decrease Gamma from 0.45 to 0.

Gb:=array(0..10000):

xb:=array(0..10000):yb:=array(0..10000):rb:=array(0..10000):

xb[0]:=x1[jmax+1]:yb[0]:=y1[jmax+1]:rb[0]:=
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sqrt((xb[0])ˆ2+(yb[0])ˆ2):

for j from 0 to jmax do

Gb[j]:=interval-step*j:

ff :=

dsolve({diff(x(t),t)=-y(t),diff(y(t),t)=-(-k*y(t)+x(t)-(x(t))ˆ3

+Gb[j]*cos(omega*t)),x(0)=xb[j],y(0)=yb[j]},{x(t),y(t)},

type=numeric,output=procedurelist);

xb[j+1]:=eval(x(t),ff(-2*Pi/omega)):

yb[j+1]:=eval(y(t),ff(-2*Pi/omega)):

rb[j+1]:=sqrt((xb[j+1])ˆ2+(yb[j+1])ˆ2):

end do:

l:=[[Gb[n], rb[n]] $n=0..jmax]:

P2:=plot(l,x=0..interval,y=0..2,

style=point,symbol=solidcircle,symbolsize=4,color=blue):

display({P1,P2},labels=[’Gamma’,’r’]);

8.5 Exercises
1. Consider the system

ẋ = −y − 0.1x

√
x2 + y2, ẏ = x − 0.1y

√
x2 + y2.

Consider the line segment � = {(x, y) ∈ �2 : 0 ≤ x ≤ 4, y = 0} and list
the first 10 returns on � given that a trajectory starts at the point (4, 0).

2. Obtain a Poincaré map for the system

ẋ = µx + y − x

√
x2 + y2, ẏ = −x + µy − y

√
x2 + y2

on the Poincaré section � = {(x, y) ∈ �2 : 0 ≤ x < ∞, y = 0}.
3. Use the characteristic multiplier to determine the stability of the limit cycle

in Example 2.

4. Solve the following differential equations:

ṙ = r(1 − r2), θ̇ = 1.

Consider the line segment � = {(x, y) ∈ �2 : 0 ≤ x ≤ ∞} and find the
Poincaré map for this system.

5. Use the characteristic multiplier to determine the stability of the limit cycle
in Example 4.
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6. Consider the two-degrees-of-freedom Hamiltonian given by

H(p, q) = ω1

2
(p2

1 + q2
1 ) + ω2

2
(p2

2 + q2
2 ).

Plot three-dimensional and two-dimensional Poincaré sections when

(a) ω1 = 3 and ω2 = 7 for the set of initial conditions t = 0, p1 =
0.5, p2 = 1.5, q1 = 0.5, and q2 = 0,

(b) ω1 = √
2 and ω2 = 3 for the set of initial conditions t = 0, p1 =

0.5, p2 = 1.5, q1 = 0.5, and q2 = 0.

7. Plot three-dimensional and two-dimensional Poincaré sections of the Toda
Hamiltonian given by

H = p2
1

2
+ p2

2

2
+ e2q2+2

√
3q1

24
+ e2q2−2

√
3q1

24
+ e−4q2

24
− 1

8

for several different energy levels of your choice.

8. Plot the chaotic solution of the periodically driven Fitzhugh–Nagumo system
(see Section 4.1)

u̇ = 10

(
u − v − u3

3
+ I (t)

)
, v̇ = u − 0.8v + 0.7,

where I (t) is a periodic step function of period 2.025, amplitude 0.267, and
width 0.3.

9. A damped driven pendulum may be modeled using the nonautonomous sys-
tem of differential equations defined by

(8.12)
d2θ

dt2 + k
dθ

dt
+ g

l
sin(θ) = � cos(ωt),

where k is a measure of the frictional force, � and ω are the amplitude
and frequency of the driving force, respectively, g is the acceleration due
to gravity, and l is the length of the pendulum. Plot a Poincaré map for this
system when k = 0.3, � = 4.5, ω = 0.6, and g

l
= 4.

10. (a) Consider system (8.10) with k = 0.1 and ω = 1.25. Plot a bifurcation
diagram for 0 ≤ � ≤ 0.12 and show that there is a clockwise hysteresis
loop at approximately 0.04 < � < 0.08. Note that there is ringing
(oscillation) at the ramp-up and ramp-down parts of the bistable region.

(b) Plot the two stable limit cycles in the bistable region for Exercise 10(a)
on one phase portrait. This shows that the system is multistable. For
example, take � = 0.07. These limit cycles correspond to steady states
on the upper and lower branches of the bistable cycle.
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9
Local and Global Bifurcations

Aims and Objectives
• To introduce some local and global bifurcation theory in the plane.

• To bifurcate limit cycles in the plane.

• To introduce elementary theory of Gröbner bases.

On completion of this chapter, the reader should be able to

• bifurcate small-amplitude limit cycles from fine foci;

• solve systems of multivariate polynomial equations;

• bifurcate limit cycles from a center;

• investigate limit cycle bifurcation from homoclinic loops, numerically.

The problem of determining the maximum number of limit cycles for planar
differential systems dates back more than 100 years and will be discussed in more
detail in Chapter 10. Local limit cycles can be analyzed in terms of local behavior
of the system near a relevant critical point or limit cycle. The theory involved in
global bifurcations is not so well developed and involves larger-scale behavior in
the plane.

An algorithm is presented for bifurcating small-amplitude limit cycles out
of a critical point. Gröbner bases are then introduced which can help with the
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reduction phase of the algorithm. The Melnikov function is used to determine the
approximate location and number of limit cycles when a parameter is small. The
limit cycles are bifurcated from a center. Bifurcations involving homoclinic loops
are discussed in Section 9.4.

9.1 Small-Amplitude Limit Cycle Bifurcations
The general problem of determining the maximum number and relative configura-
tions of limit cycles in the plane has remained unresolved for over a century. The
problem will be stated in Chapter 10. Both local and global bifurcations have been
studied to create vector fields with as many limit cycles as possible. All of these
techniques rely heavily on symbolic manipulation packages such as Maple. Unfor-
tunately, the results in the global case number relatively few. Only in recent years
have many more results been found by restricting the analysis to small-amplitude
limit cycle bifurcations; see, for example, Chapter 10 and the references therein.

Consider systems of the form

ẋ = P(x, y), ẏ = Q(x, y),(9.1)

where P and Q are polynomials in x and y. It is well known that a nondegenerate
critical point, say, x0, of center or focus type can be moved to the origin by a linear
change of coordinates to give

ẋ = λx − y + p(x, y), ẏ = x + λy + q(x, y),(9.2)

where p and q are at least quadratic in x and y. If λ 
= 0, then the origin is
structurally stable for all perturbations.

Definition 1. A critical point, say, x0, is called a fine focus of system (9.1) if it is a
center for the linearized system at x0. Equivalently, if λ = 0 in system (9.2), then
the origin is a fine focus.

In the work to follow, assume that the unperturbed system does not have a
center at the origin. The technique used here is entirely local; limit cycles bifurcate
out of a fine focus when its stability is reversed by perturbing λ and the coefficients
arising in p and q. These are said to be local or small-amplitude limit cycles. How
close the origin is to being a center of the nonlinear system determines the number
of limit cycles that may be obtained from bifurcation. The method for bifurcating
limit cycles will now be summarized and is given in detail in [1].

By a classical result, there exists a Lyapunov function, say, V (x, y) =
V2(x, y)+V3(x, y)+· · ·+Vk(x, y)+· · · , where Vk is a homogeneous polynomial
of degree k, such that

(9.3)
dV

dt
= η2r

2 + η4r
4 + · · · + η2i r

2i + · · · ,
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where r2 = x2 + y2. The η2i are polynomials in the coefficients of p and q

and are called the focal values. The origin is said to be a fine focus of order k if
η2 = η4 = · · · = η2k = 0 but η2k+2 
= 0. Take an analytic transversal through the
origin parameterized by some variable, say, c. It is well known that the return map
of (9.2), c �→ h(c), is analytic if the critical point is nondegenerate. Limit cycles of
system (9.2) then correspond to zeros of the displacement function, d(c) = h(c)−c;
see Chapter 8. Hence, at most k limit cycles can bifurcate from the fine focus. The
stability of the origin is clearly dependent on the sign of the first nonzero focal
value, and the origin is a nonlinear center if and only if all of the focal values are
zero. Consequently, it is the reduced values, or Lyapunov quantities, say, L(j), that
are significant. One needs only consider the value η2k reduced modulo the ideal
〈η2, η4, . . . , η2k−2〉 to obtain the Lyapunov quantity L(k − 1). To bifurcate limit
cycles from the origin, select the coefficients in the Lyapunov quantities such that

|L(m)| � |L(m + 1)| and L(m)L(m + 1) < 0,

for m = 0, 1, . . . , k − 1. At each stage, the origin reverses stability and a limit
cycle bifurcates in a small region of the critical point. If all of these conditions
are satisfied, then there are exactly k small-amplitude limit cycles. Conversely, if
L(k) 
= 0, then at most k limit cycles can bifurcate. Sometimes it is not possible
to bifurcate the full complement of limit cycles; an example is given in [9].

The algorithm for bifurcating small-amplitude limit cycles may be split into
the following four steps:

1. computation of the focal values using a mathematical package;

2. reduction of the nth focal value modulo a Gröbner basis of the ideal generated
by the first n − 1 focal values (or the first n − 1 Lyapunov quantities);

3. checking that the origin is a center when all of the relevant Lyapunov quan-
tities are zero;

4. bifurcation of the limit cycles by suitable perturbations.

Dongming Wang [2] has recently developed software to deal with the reduc-
tion part of the algorithm for several differential systems and Gröbner bases are
introduced in the next section.

For some systems, the following theorems can be used to prove that the origin
is a center.

The Divergence Test. Suppose that the origin of system (9.1) is a critical point of
focus type. If

div (ψX) = ∂(ψP )

∂x
+ ∂(ψQ)

∂y
= 0,

where ψ : �2 → �2, then the origin is a center.
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The Classical Symmetry Argument. Suppose that λ = 0 in system (9.2) and that
either

(i) p(x, y) = −p(x, −y) and q(x, y) = q(x, −y) or

(ii) p(x, y) = p(−x, y) and q(x, y) = −q(−x, y).

Then the origin is a center.

Adapting the classical symmetry argument, it is also possible to prove the
following theorem.

Theorem 1. The origin of the system

ẋ = y − F(G(x)), ẏ = −G′(x)

2
H(G(x)),

where F and H are polynomials, G(x) = ∫ x

0 g(s) ds with g(x)sgn(x) > 0 for
x 
= 0, g(0) = 0, is a center.

The reader is asked to prove this theorem in the exercises at the end of the chapter.
To demonstrate the method for bifurcating small-amplitude limit cycles, con-

sider Liénard equations of the form

ẋ = y − F(x), ẏ = −g(x),(9.4)

where F(x) = a1x +a2x
2 +· · ·+aux

u and g(x) = x +b2x
2 +b3x

3 +· · ·+bvx
v .

This system has proved very useful in the investigation of limit cycles when showing
existence, uniqueness, and hyperbolicity of a limit cycle. In recent years, there have
also been many local results; see, for example, [1] and Chapter 10. Therefore, it
seems sensible to use this class of system to illustrate the method.

The computation of the first three focal values will be given. Write Vk(x, y) =∑
i+j=k Vi,j x

iyj and denote Vi,j as being odd or even according to whether i is
odd or even and that Vi,j is 2-odd or 2-even according to whether j is odd or even,
respectively. Solving (9.3), it is easily seen that V2 = 1

2 (x2 + y2) and η2 = −a1.
Therefore, set a1 = 0. The odd and even coefficients of V3 are then given by the
two pairs of equations

3V3,0 − 2V1,2 = b2,

V1,2 = 0

and

−V2,1 = a2,

2V2,1 − 3V0,3 = 0,
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respectively. Solve the equations to give

V3 = 1

3
b2x

3 − a2x
2y − 2

3
a2y

3.

Both η4 and the odd coefficients of V4 are determined by the equations

−η4 − V3,1 = a3,

−2η4 + 3V3,1 − 3V1,3 = −2a2b2,

−η4 + V1,3 = 0.

The even coefficients are determined by the equations

4V4,0 − 2V2,2 = b3 − 2a2
2,

2V2,2 − 4V0,4 = 0

and the supplementary condition V2,2 = 0. In fact, when computing subsequent
coefficients for V4m, it is convenient to require that V2m,2m = 0. This ensures that
there will always be a solution. Solving these equations gives

V4 = 1

4
(b3 − 2a2

2)x4 − (η4 + a3)x
3y + η4xy3

and

η4 = 1

8
(2a2b2 − 3a3).

Suppose that η4 = 0 so that a3 = 2
3a2b2. It can be checked that the two sets of

equations for the coefficients of V5 give

V5 =
(

b4

5
− 2a2

2b2

3

)
x5 + (2a3

2 − a4)x
4y +

(
8a3

2

3
− 4a4

3
+ 2a2b3

3

)
x2y3

+
(

16a3
2

15
− 8a4

15
− 4a2b3

15

)
y5.

The coefficients of V6 may be determined by inserting the extra condition V4,2 +
V2,4 = 0. In fact, when computing subsequent even coefficients for V4m+2, the
extra condition V2m,2m+2 +V2m+2,2m = 0 is applied, which guarantees a solution.
The polynomial V6 contains 27 terms and will not be listed here. However, η6 leads
to the Lyapunov quantity

L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.

Lemma 1. The first three Lyapunov quantities for system (9.4) are L(0) = −a1,
L(1) = 2a2b2 − 3a3, and L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.
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Let Ĥ (u, v) denote the maximum number of small-amplitude limit cycles
that can be bifurcated from the origin for system (9.4).

Example 1. Prove that

(i) Ĥ (3, 2) = 1 and

(ii) Ĥ (3, 3) = 2

for system (9.4).

Solutions.

(i) Consider the case where u = 3 and v = 2. Now L(0) = 0 if a1 = 0 and
L(1) = 0 if a3 = 2

3a2b2. Thus, system (9.4) becomes

ẋ = y − a2x
2 − 2

3
a2b2x

3, ẏ = −x − b2x
2,

and the origin is a center by Theorem 1. Therefore, the origin is a fine focus
of order 1 if and only if a1 = 0 and 2a2b2 − 3a3 
= 0. The conditions are
consistent. Select a3 and a1 such that

|L(0)| � |L(1)| and L(0)L(1) < 0.

The origin reverses stability once and a limit cycle bifurcates. The pertur-
bations are chosen such that the origin reverses stability once and the limit
cycles that bifurcate persist. Thus, Ĥ (3, 2) = 1.

(ii) Consider system (9.4) with u = 3 and v = 3. Now L(0) = 0 if a1 = 0,
L(1) = 0 if a3 = 2

3a2b2, and L(2) = 0 if a2b2b3 = 0. Thus, L(2) = 0 if

(a) a2 = 0,

(b) b3 = 0, or

(c) b2 = 0.

If condition (a) holds, then a3 = 0 and the origin is a center by the divergence test
(divX = 0). If condition (b) holds, then the origin is a center since Ĥ (3, 2) = 1. If
condition (c) holds, then a3 = 0 and system (9.3) becomes

ẋ = y − a2x
2, ẏ = −x − b3x

3,

and the origin is a center by the classical symmetry argument. The origin is thus a
fine focus of order 2 if and only if a1 = 0 and 2a2b2 − 3a3 = 0 but a2b2b3 
= 0.
The conditions are consistent. Select b3, a3, and a1 such that

|L(1)| � |L(2)|, L(1)L(2) < 0 and |L(0)| � |L(1)|, L(0)L(1) < 0.

The origin has changed stability twice, and there are two small-amplitude limit
cycles. The perturbations are chosen such that the origin reverses stability twice
and the limit cycles that bifurcate persist. Thus, Ĥ (3, 3) = 2.
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9.2 Gröbner Bases
The field of computer algebra has expanded considerably in recent years and
extends deeply into both mathematics and computer science. One fundamental tool
in this new field is the theory of Gröbner bases. In 1965, as part of his PhD research
studies, Bruno Buchberger [10] devised an algorithm for computing Gröbner bases
for a set of multivariate polynomials. The Gröbner bases algorithm was named in
honor of his PhD supervisor Wolfgang Gröbner. The most common use of the
Gröbner bases algorithm is in computing bases which can be related to operations
for ideals in commutative polynomial rings. Most mathematical packages now have
the Buchberger algorithm incorporated for computing Gröbner bases and Maple is
no exception. This section aims to give a brief overview of the method including
some notation, definitions and theorems without proof. Introductory theory on
commutative rings and ideals and proofs to the theorems listed in this section can
be found in most of the textbooks in the reference section of this chapter. There are a
wide range of applications; see [3], [4], [5], and [6], for example. However, for this
text we will be interested in Gröbner bases in polynomial rings in several variables
only. The theory of Gröbner bases originated with the desire to solve systems of
nonlinear equations involving multivariate polynomial equations. Wang and Zheng
[2, 5] have used Gröbner bases among other methods to test elimination algorithms
when solving multivariate polynomial systems. One interesting unsolved example
appears in [5] when attempting to prove complete center conditions for a certain
cubic system.

Recall some basic algebraic definitions:

Definition 2. A ring, say, (R, +, ∗), is a set R with two binary operations + and
∗, satisfying the following conditions:

1. (R, +) is an Abelian group;

2. (R, ∗) is a semigroup,

3. the distributive laws hold.

If (R, +) is commutative, then (R, +, ∗) is called a commutative ring.

Definition 3. A nonempty subset I ⊂ (R, +, ∗) is called an ideal if for all r ∈ R

and a ∈ I , r ∗ a ∈ I and a ∗ r ∈ I .

Notation. Let N denote the set of non-negative integers N = {0, 1, 2, . . . }. Let
α = (α1, α2, . . . , αn) be a power vector in Nn and let x1, x2, . . . , xn be any n vari-
ables. Write xα = x

α1
1 x

α2
2 · · · xαn

n , where |α| = (α1 + α2 + · · · + αn) is the total
degree of the monomial xα . Let R = K[x] = K [x1, x2, . . . , xn] be a commutative
polynomial ring in n variables over an algebraically closed field K such as C, Q,
or R. Recall that a field is an algebraic structure in which the operations addition,
subtraction, multiplication, and division (except by zero) may be performed.
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Definition 4. Let P = {p1, p2, . . . , ps} be a set of multivariate polynomials; then
the ideal generated by P , denoted by I = 〈P 〉, is given by{

s∑
i=1

fipi : f1, f2, . . . , fs ∈ K[x]
}

,

where the polynomials pi form a basis for the ideal they generate.

In 1888, David Hilbert proved the following theorem.

Theorem 2 (Hilbert’s Bases Theorem). If K is a field, then every ideal in the
polynomial ring K[x] is finitely generated.

A proof to this theorem can be found in most textbooks in the reference section of
this chapter.

An extremely useful basis of an ideal is the Gröbner basis, which will be
defined after the notion of monomial ordering is introduced.

Definition 5. A monomial order, say, �, is a total order on the monomials of R

such that

1. for all α ∈ Nn, α � 0;

2. for all α, β, γ ∈ Nn, α � β implies that α + γ � β + γ .

The three most common monomial orderings are defined by the following.

Definition 6. Suppose that α, β ∈ Nn. Then

1. the lexicographical order is such that, α �lex β if and only if the leftmost
nonzero entry in α − β is positive;

2. the degree lexicographical order is such that, α �dlex β if and only if |α| �
|β| or (|α| = |β| and α �lex β);

3. the degree reverse lexicographical order is such that, α �drevlex β if and
only if |α| � |β| or (|α| = |β| and the rightmost nonzero entry in α − β is
negative.

Note that there are many other monomial orderings; these include weighted and
grouped orders [4].

Example 2. Suppose that xα = x3y3z, xβ = x2y4z2, and xγ = xy6z. Then

1. (3, 3, 1) = α �lex β = (2, 4, 2) since in (α−β) = (1, −1, −1), the leftmost
nonzero entry is positive. Hence, x3y3z �lex x2y4z2.
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2. (i) β = (2, 4, 2) �dlex α = (3, 3, 1) since |β| = 8 > |α| = 7. Hence,
x2y4z2 �dlex x3y3z. (ii) β = (2, 4, 2) �dlex γ = (1, 6, 1) since |β| =
|γ | = 8 and in (β − γ ) = (1, −2, 1), the leftmost nonzero entry is positive.
Hence, x2y4z2 �dlex xy6z.

3. (i) β = (2, 4, 2) �drevlex α = (3, 3, 1) since |β| = 8 > |α| = 7. Hence,
x2y4z2 �drevlex x3y3z. (ii) γ = (1, 6, 1) �drevlex β = (2, 4, 2) since |γ | =
|β| = 8, and in (γ − β) = (−1, 2, −1), the rightmost nonzero entry is
negative. Hence, xy6z �drevlex x2y4z2.

Definition 7. Assume that there is a fixed term order � on a set of monomials that
uniquely orders the terms in a given nonzero polynomial p = ∑

α cαxα ∈ K[x].
Define

1. the multidegree of p as multideg(p) = max (α ∈ Nn : cα 
= 0);

2. the leading coefficient of p as LC(p) = cmultideg(p);

3. the leading monomial of p as LM(p) = xmultideg(p);

4. the leading term of p as LT(p) = LC(p)LM(p);

Example 3. Suppose that p(x, y, z) = 2x3y3z + 3x2y4z2 − 4xy6z; then

• with respect to �lex, multideg(p) = (3, 3, 1), LC(p) = 2, LM(p) = x3y3z,
and LT(p) = 2x3y3z;

• with respect to �dlex, multideg(p) = (2, 4, 2), LC(p) = 3, LM(p) =
x2y4z2, and LT(p) = 3x2y4z2;

• with respect to �drevlex, multideg(p) = (1, 6, 1), LC(p) = −4, LM(p) =
xy6z, and LT(p) = −4xy6z.

Definition 8. A polynomial f is reduced with respect to P = {p1, p2, . . . , ps}
(or modulo P), f →P h if and only if there exists pi ∈ P such that

h = f − LT(f )

LT(pi)
pi.

Furthermore, a polynomial g is completely reduced with respect to P if no mono-
mial of g is divisible by any of the LM (pi), for all 1 ≤ i ≤ s.

Division Algorithm for Multivariate Polynomials. Let P = {p1, p2, . . . , ps}
be an ordered set of polynomials in K[x]; then there exist polynomials q1, q2, . . . ,

qs, r ∈ K[x] such that for p ∈ K[x]
p = q1p1 + q2p2 + · · · + qsps + r,
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and either r = 0 or r is completely reduced with respect to P . The algorithm is
described briefly here and is a generalization of the division algorithm in K [x1].
Perform the reduction of p modulo p1, p2, . . . , ps by repeatedly applying the fol-
lowing procedure until doing so leaves p unchanged. Take the smallest i such that
ai = LT (pi) divides one of the terms of p. Let f be the largest (with respect to
some monomial ordering �) term of p that is divisible by ai and replace p by

p −
(

f
ai

)
pi ; the process eventually terminates. For a more detailed explanation,

see the textbooks at the end of the chapter.

When dealing with large ordered sets of polynomials with high total degrees,
one must use computer algebra. There is a command in Maple for carrying out the
division algorithm. The syntax is

Reduce (poly, [poly1, poly2, . . . ] , plex (x1, x2, . . . )) ,

which gives a list representing a reduction of poly in terms of the polyi with
x1 � x2 � · · · .

Example 4. Fix a lexicographical order x �lex y �lex z.

(i) Divide the polynomial p = x4 + y4 + z4 by the ordered list of polynomials{
x2 + y, z2y − 1, y − z2

}
.

(ii) Repeat the division with the divisors listed as
{
y − z2, z2y − 1, x2 + y

}
.

Solution. Using the Reduce command in Maple:

(i) x4 + y4 + z4 =
(
x2 − y

) (
x2 + y

)
+

(
2 + y2

) (
z2y − 1

)
+

(
2y + y3

) (
y − z2

)
+ 2 + z4;

(ii) x4 + y4 + z4 =
(
−x2 + y3 + z2 + y2z2 + yz4 + z6

) (
y − z2

)
+ 0

(
z2y − 1

)
+

(
x2 − z2

) (
x2 + y

)
+ 2z4 + z8.

Note that the remainders are different. Unfortunately, the division algorithm for
multivariate polynomials does not produce unique remainders. However, all is not
lost; unique remainders exist when the basis of the ideal is a Gröbner basis.

Definition 9. The lowest common multiple (LCM) of two monomials x
α1
1 x

α2
2 · · ·

x
αn
n and x

β1
1 x

β2
2 · · · xβn

n is given by

LCM
(
xα, xβ

) = x
max(α1,β1)
1 x

max(α2,β2)
2 · · · xmax(αn,βn)

n .
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Definition 10. The S-polynomial of two nonzero ordered polynomials p, π ∈
K[x] is defined by

(9.5) S (p, π) = LCM(LM(p), LM(π))

LT (p)
p − LCM(LM(p), LM(π))

LT (π)
π.

The S-polynomials are constructed to cancel leading terms.

Example 5. Suppose that p = x−13y2 −12z3 and π = x2 −xy+92z; determine
S (p, π) with respect to the term order x �lex y �lex z.

Solution. Substituting into (9.5),

S (p, π) = x2

x

(
x − 13y2 − 12z3

)
− x2

x2

(
x2 − xy + 92z

)
.

Hence,

S(p, π) = −13xy2 − 12xz3 + xy − 92z

and the leading terms of p and π have cancelled.

The following theorem gives rise to Buchberger’s algorithm.

Theorem 3 (Buchberger’s Theorem). Let G = {g1, g2, . . . , gs} be a set of
nonzero polynomials in K[x]; then G is a Gröbner basis for the ideal I = 〈G〉 if
and only if for all i 
= j ,

S
(
gi, gj

) →G 0.

Buchberger’s Algorithm to Compute Gröbner Bases. The algorithm is used
to transform a set of polynomial ideal generators into a Gröbner basis with re-
spect to some monomial ordering. Suppose that P = {p1, p2, . . . , ps} is a set of
multivariate polynomials with a fixed term order �.

Step 1 Using the division algorithm for multivariate polynomials (PolynomialRe-
duce in Maple), reduce all of the possible S-polynomial combinations mod-
ulo the set P .

Step 2 Add all nonzero polynomials resulting from Step 1 to P , and repeat Steps
1 and 2 until nothing new is added.

The Hilbert basis theorem guarantees that the algorithm eventually stops. Unfor-
tunately, there are redundant polynomials in this Gröbner basis.

Definition 11. A Gröbner basis G = {g1, g2, . . . , gs} is minimal if for all 1 ≤ i ≤
s, LT (gi) /∈ 〈LT (g1) , LT (g2) , . . . , LT (gs)〉.
Definition 12. A minimal Gröbner basis G = {g1, g2, . . . , gs} is reduced if for all
pairs i, j , i 
= j , no term of gi is divisible by LT

(
gj

)
.
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Theorem 4. Every polynomial ideal I ⊂ K[x] has a unique reduced Gröbner
basis.

A Gröbner basis for a polynomial ideal may be computed using the Maple
command Basis.

Example 6. Determine the critical points of the system

(9.6) ẋ = x + y2 − x3, ẏ = 4x3 − 12xy2 + x4 + 2x2y2 + y4.

Solution. The critical points are found by solving the equations ẋ = ẏ = 0.
Suppose that

I = 〈x + y2 − x3, 4x3 − 12xy2 + x4 + 2x2y2 + y4〉;
then a reduced Gröbner basis for I with respect to �lex may be computed using
Maple. The command lines are given in Section 9.6. Note that a different reduced
Gröbner basis might result if a different ordering is taken:{

−195y4 + 1278y6 − 1037y8 + 90y10 + y12, 5970075x + 5970075y2

+163845838y4 − 162599547y6 + 14472880y8 + 160356y10
}

.

The first generator is expressed in terms of y alone, which can be determined
from any one-variable technique. Back substitution is then used to determine the
corresponding x values. There are seven critical points at

(0, 0), (2.245, −3.011), (2.245, 3.011), (1.370, −1.097),

(1.370, 1.097), (−0.895, −0.422), (−0.895, 0.422).

Of course, the reader could also use the solve command in Maple, which is based
on the Buchberger algorithm.

Example 7. The first five Lyapunov quantities for the Liénard system

ẋ = y − a1x − a2x
2 − a3x

3 − a4x
4, ẏ = −x − b2x

2 − b3x
3,

are

L(0) = −a1;
L(1) = −3a3 + 2b2a2;
L(2) = 5b2(2a4 − b3a2);
L(3) = −5b2(92b2

2a4 − 99b2
3a2 + 1520a2

2a4 − 760a3
2b3 − 46b2

2b3a2

+ 198b3a4);



9.3. Melnikov Integrals and Bifurcating Limit Cycles from a Center 209

L(4) = −b2(14546b4
2a4 + 105639a3

2b2
3 + 96664a3

2b2
2b3 − 193328a2

2b2
2a4

− 891034a4
2a4 + 445517a5

2b3 + 211632a2a
2
4 − 317094a2

2b3a4

− 44190b2
2b3a4 + 22095b2

2b
2
3a2 − 7273b4

2b3a2 + 5319b3
3a2

− 10638b2
3a4),

where a3 = 2
3a2b2 was substituted from L(1) = 0. The polynomials can be reduced

using a number of substitutions; however, the Gröbner basis is easily computed as

GB = {−4b2a4 + 3b3a3, −3a3 + 2b2a2, a1}
under the ordering a1, a2 � a3 � a4 � b2 � b3. The Gröbner basis can then be
used to help show that the origin is a center when all of the Lyapunov quantities
are zero.

Note that there are specialist commutative algebraic packages, such as Sin-
gular and Macaulay, that use Gröbner bases intensely for really tough problems.

9.3 Melnikov Integrals and Bifurcating Limit Cycles
from a Center

Consider perturbed two-dimensional differential systems of the form

(9.7) ẋ = f(x) + εg(x, ε, µ).

Assume that the unperturbed system

(9.8) ẋ = f(x)

has a one-parameter family of periodic orbits given by

�r : x = γr(t),

where the functions γr(t) have minimum periods Tr and r belongs to an indexing
set, say, I , that is either a finite or semiinfinite open interval of �.

Definition 13. The Melnikov function for system (9.7) along the cycle �r : x =
γr(t), 0 ≤ t ≤ Tr , of (9.8) is given by

M(r, µ) =
∫ Tr

0
exp

(
−
∫ t

0
∇.f(γr(s)) ds

)
f ∧ g(γr(t), 0, µ) dt.

Theorem 5. Suppose that

M(r0, µ0) = 0 and
∂M

∂r

∣∣∣∣
(r0,µ0)


= 0,
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where r0 ∈ I . Then for 0 < ε � 1, system (9.7) has a unique hyperbolic limit
cycle close to �r0 . System (9.7) has no limit cycle close to �r0 if M(r0, µ0) 
= 0
and ε is small.

Theorem 6. Suppose that M(r, µ0) = 0 has exactly k solutions r1, r2, . . . , rk ∈ I

with

∂M

∂r

∣∣∣∣
(ri ,µ0)


= 0,

for some i from 1 to k. Then for 0 < ε � 1, exactly k one-parameter families
of hyperbolic limit cycles bifurcate from the period annulus of (9.8) at the points
r1, r2, . . . , rk . If M(r, µ0) 
= 0, then there are no limit cycles.

Melnikov-type integrals have been widely used since Poincaré’s investiga-
tions at the end of the 19th century. It is well known that the Melnikov function
for system (9.7) is proportional to the derivative of the Poincaré map for (9.7)
with respect to ε. The interested reader may consult [7] for more details; the paper
also deals with limit cycles of multiplicity greater than one and the bifurcation of
limit cycles from separatrix cycles. To avoid elliptic integrals, only systems with
γr(t) = (x(t), y(t)) = (r cos t, r sin t) will be considered in this book.

Example 8. Consider the van der Pol system

ẋ = y, ẏ = −x − ε(1 − x2)y.

Prove that there is a limit cycle asymptotic to the circle of radius 2 when ε is small.

Solution. In this case, f(x) = (y, −x)T , g(x, ε) = (0, −εy(1 − x2))T , Tr = 2π ,
x = r cos(t), y = r sin(t), and ∇.f(x) = 0. Therefore,

M(r, µ) =
∫ Tr

o

f ∧ g(γr(t), 0, µ) dt.

Thus,

M(r, µ) =
∫ 2π

0
−r2

(
sin2 t (1 − r2 cos2 t)

)
dt

and

M(r, µ) = π

4
r2(r2 − 4).

Hence, M(r0, µ) = 0 when r0 = 2 and ∂M
∂r

∣∣
(r0,0)

= πr0(r
2
0 − 2) 
= 0. Therefore,

there exists a unique hyperbolic limit cycle asymptotic to a circle of radius 2 for
the van der Pol system when ε is sufficiently small.
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Example 9. Consider the Liénard system

(9.9) ẋ = −y + ε(a1x + a3x
3 + a5x

5), ẏ = x.

Determine the maximum number and approximate location of the limit cycles when
ε is sufficiently small.

Solution. Again, f(x) = (−y, x)T , g(x, ε) = (ε(a1x + a3x
3 + a5x

5), 0)T , Tr =
2π , and ∇.f(x) = 0. Therefore,

M(r, µ) =
∫ 2π

0
−a1r

2 cos2 t − a3r
4 cos4 t − a5r

6 cos6 t dt

and

M(r, µ) = −πr2
(

a1 + 3a3

4
r2 + 5a5

8
r4
)

.

The polynomial m(r) = a1 + 3a3
4 r2 + 5a5

8 r4 has at most two positive roots. There-
fore, when ε is sufficiently small, system (9.9) has at most two hyperbolic limit
cycles asymptotic to circles of radii rj (j = 1, 2), where rj are the positive roots
of m(r).

9.4 Bifurcations Involving Homoclinic Loops
Global bifurcations of limit cycles from centers were investigated in Section 9.3.
Consider the following van der Pol-type system

(9.10) ẋ = y + 10x(0.1 − y2), ẏ = −x + C,

where C is a constant. If C = 0, the system has one critical point at the origin and
a stable limit cycle surrounding it. However, if C 
= 0, there is a second critical

point at

(
C, 1

20C
+

√( 1
20C

)2 + 0.1

)
, which is a saddle point. Figure 9.1 shows

three possible phase portraits for varying values of the parameter C.
When C is large and negative, the saddle point is far from the origin. As C

is increased and approaches the approximate value C ≈ −0.18, one of the stable
and one of the unstable branches of the saddle point coalesce to form a homoclinic
loop. As C is increased further toward C = 0, the saddle point moves away from
the limit cycle (down the negative y-axis). As C is increased through C = 0, the
saddle point moves toward the limit cycle (down the positive y-axis) and once more
a homoclinic loop is formed at C ≈ 0.18. As C passes through C ≈ 0.18, the limit
cycle vanishes.

Homoclinic Bifurcation. The global bifurcation of limit cycles from homoclinic
loops will now be discussed via example. The analysis involved in bifurcating limit
cycles from separatrix cycles is beyond the scope of this book; however, interested
readers are referred to [7]. Both homoclinic and heteroclinic bifurcations are used
to obtain polynomial systems with a number of limit cycles; see Chapter 10. The
Maple package can be used to investigate some of these systems numerically.
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Figure 9.1: [Maple animation] Typical phase portraits for system (9.10) when (a)
C < −0.18 (no limit cycle), (b) −0.18 < C < 0.18 (a stable limit cycle), and (c)
C > 0.18 (no limit cycle).

Example 10. Investigate the system

ẋ = y, ẏ = x + x2 − xy + λy

as the parameter λ varies and plot possible phase portraits.

Solution. There are two critical points at O = (0, 0) and P = (−1, 0). The
Jacobian is given by

J =
(

0 1
1 + 2x − y −x + λ

)
.

The origin is a saddle point, and it can be shown that the point P is a node or
focus. Since trace JP = 1 + λ, it follows that P is stable if λ < −1 and unstable
if λ > −1. The point P is also stable if λ = −1.

It can be shown that a limit cycle exists for −1 < λ < λ0, where λ0 ≈ −0.85.
Since the limit cycle appears from a homoclinic loop, which exists at a value, say
λ0, this is known as a homoclinic bifurcation. More details can be found in [7].
Phase portraits for three values of λ are shown in Figure 9.2.

Another example is given in the exercises in Section 9.6.

9.5 Maple Commands
See the help menu for the Groebner package.

> # Program 9a: Computation of focal values.

> restart:kstart:=2:kend:=11:

pp:=array(1..20):qq:=array(1..20):vv:=array(1..20):vx:=array(0..20):

vy:=array(0..20):xx:=array(0..20,0..20):

yy:=array(0..20,0..20):uu:=array(0..20,0..20):

z:=array(0..20):ETA:=array(1..20):

pp[1]:=y:qq[1]:=-x:vv[2]:=(xˆ2+yˆ2)/2:vx[2]:=x:vy[2]:=y:
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Figure 9.2: [Maple animation] Phase portraits for Example 10 when (a) λ = −1.5,
(b) λ = −0.9, and (c) λ = 0.

for j1 from 0 to 20 do

for j2 from 0 to 20 do

xx[j1,j2]:=0:yy[j1,j2]:=0:end do:end do:

# Insert the coefficients for a specific Lienard system.

xx[0,1]:=1:xx[2,0]:=-a2:xx[3,0]:=-a3:xx[4,0]:=-a4:

yy[1,0]:=-1:yy[2,0]:=-b2:yy[3,0]:=-b3:

for kloop from kstart to kend do

kk:=kloop:

dd1:=sum(pp[i]*vx[kk+2-i]+qq[i]*vy[kk+2-i],i=2..kk-1):

pp[kk]:=sum(xx[kk-i,i]*xˆ(kk-i)*yˆi,i=0..kk):

qq[kk]:=sum(yy[kk-i,i]*xˆ(kk-i)*yˆi,i=0..kk):

vv[kk+1]:=sum(uu[kk+1,i]*xˆ(kk+1-i)*yˆi,i=0..kk+1):

d1:=y*diff(vv[kk+1],x)-x*diff(vv[kk+1],y)+pp[kk]*vx[2]+

qq[kk]*vy[2]+dd1:

dd:=expand(d1):

if irem(kk,2)=1 then dd:=dd-ETA[kk+1]*(xˆ2+yˆ2)ˆ((kk+1)/2):fi:

dd:=numer(dd):x:=1: for i from 0 to kk+1 do z[i]:=coeff(dd,y,i);od:

if kk=2 then

seqn:=solve({z[0],z[1],z[2],z[3]},{uu[3,0],uu[3,1],uu[3,2],uu[3,3]}):

elif kk=3 then

seqn:=solve({z[0],z[1],z[2],uu[4,2],z[3],z[4]},{uu[4,0],uu[4,1],uu[4,2],

uu[4,3],uu[4,4],ETA[4]}):

elif kk=4 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5]},{uu[5,0],uu[5,1],uu[5,2],

uu[5,3],uu[5,4],uu[5,5]}):

elif kk=5 then

seqn:=solve({z[0],z[1],z[2],uu[6,2]+uu[6,4],z[3],z[4],z[5],z[6]},

{uu[6,0],uu[6,1],uu[6,2],uu[6,3],uu[6,4],uu[6,5],uu[6,6],ETA[6]}):
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elif kk=6 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5],z[6],z[7]},

{uu[7,0],uu[7,1],uu[7,2],uu[7,3],uu[7,4],uu[7,5],uu[7,6],uu[7,7]}):

elif kk=7 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],uu[8,4],z[5],z[6],z[7],z[8]},

{uu[8,0],uu[8,1],uu[8,2],uu[8,3],uu[8,4],uu[8,5],uu[8,6],uu[8,7],

uu[8,8],ETA[8]}):

elif kk=8 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5],z[6],z[7],z[8],z[9]},

{uu[9,0],uu[9,1],uu[9,2],uu[9,3],uu[9,4],uu[9,5],uu[9,6],uu[9,7],

uu[9,8],uu[9,9]}):

elif kk=9 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],uu[10,4]+uu[10,6],z[5],z[6],

z[7],z[8],z[9],z[10]},

{uu[10,0],uu[10,1],uu[10,2],uu[10,3],uu[10,4],uu[10,5],uu[10,6],

uu[10,7],uu[10,8],uu[10,9],uu[10,10],ETA[10]}):

elif kk=10 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5],z[6],z[7],z[8],z[9],z[10],

z[11]},{uu[11,0],uu[11,1],uu[11,2],uu[11,3],uu[11,4],uu[11,5],uu[11,6],

uu[11,7],uu[11,8],uu[11,9],uu[11,10],uu[11,11]}):

elif kk=11 then

seqn:=solve({z[0],z[1],z[2],z[3],z[4],z[5],z[6],uu[12,6],z[7],z[8],

z[9],z[10],z[11],z[12]},{uu[12,0],uu[12,1],uu[12,2],uu[12,3],uu[12,4],

uu[12,5],uu[12,6],uu[12,7],uu[12,8],uu[12,9],uu[12,10],uu[12,11],

uu[12,12],ETA[12]}):fi:

assign(seqn):x:=’x’:i:=’i’:

vv[kk+1]:=sum(uu[kk+1,i]*xˆ(kk+1-i)*yˆi,i=0..kk+1):

vx[kk+1]:=diff(vv[kk+1],x):vy[kk+1]:=diff(vv[kk+1],y):

ETA[kk+1]:=ETA[kk+1]:od:

print(L1=numer(ETA[4])):a3:=2*a2*b2/3:print(L2=numer(ETA[6]));

print(L3=numer(ETA[8]));print(L4=numer(ETA[10]));

print(L5=numer(ETA[12]));

See the output in the Web pages at the Maple Application Center.

> # Program 9b: Groebner bases.

> # Example 4: Division algorithm for multivariate polynomials.

> with(Groebner):

> Reduce(xˆ4+yˆ4+zˆ4,[xˆ2+y,zˆ2*y-1,y-zˆ2],plex(x,y,z));

> Reduce(xˆ4+yˆ4+zˆ4,[y-zˆ2,zˆ2*y-1,xˆ2+y],plex(x,y,z));

2 + z4

2z4 + z8

> # Example 5: S-polynomials.

> SPolynomial(x-13*yˆ2-12*zˆ3,xˆ2-x*y+92*z,plex(x,y,z));
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−13xy2 − 12xz3 + xy − 92z

> # Example 6: Reduced Groebner basis.

> GB=Basis([x+yˆ2-xˆ3,4*xˆ3-12*x*yˆ2+xˆ4+2*xˆ2*yˆ2+yˆ4],plex(x,y,z));

GB = [y12 + 90y10 − 1037y8 + 1278y6 − 195y4, 160356y10 + 14472880y8+
5970075x − 162599547y6 + 163845838y4 + 5970075y2]

> # Example 7: Compute a Groebner basis from focal values.

> restart:with(Groebner):

GB:=Basis([-a1,2*a2*b2-3*a3,5*b2*(2*a4-b3*a2),

-5*b2*(92*b2ˆ2*a4-99*b3ˆ2*a2+1520*a2ˆ2*a4-760*a2ˆ3*b3-46*b2ˆ2*b3*a2+

198*b3*a4),-b2*(14546*b2ˆ4*a4+105639*a2ˆ3*b3ˆ2+96664*a2ˆ3*b2ˆ2*b3-

193328*a2ˆ2*b2ˆ2*a4-891034*a2ˆ4*a4+445517*a2ˆ5*b3+211632*a2*a4ˆ2-

317094*a2ˆ2*b3*a4-44190*b2ˆ2*b3*a4+22095*b2ˆ2*b3ˆ2*a2-7273*b2ˆ4*b3*a2

+5319*b3ˆ3*a2-10638*b3ˆ2*a4)],plex(a1,a2,a3,a4,b2,b3));

GB := [−4b2a4 + 3b3a3, 2a2b2 − 3a3, a1]

> # Program 9c: Animation of a homoclinic bifurcation.

> # Figure 9.1.

> with(plots):with(DEtools):

deq1:=diff(x(t),t)=y(t)+10*x(t)*(0.1-(y(t))ˆ2):

deq2:=diff(y(t),t)=-x(t)+C:

bifdeq1:=(parameter)->subs(C=parameter,deq1):

bifdeq2:=(parameter)->subs(C=parameter,deq2):

Homoclinic:=seq(DEplot({bifdeq1(’i/100-0.3’),bifdeq2(’i/100-0.3’)},

[x(t),y(t)],0..100,[[x(0)=0.1,y(0)=0]],y=-1.5..1.5,x=-1.5..1.5,

arrows=NONE,stepsize=0.1,linecolour=blue),i=0..100):

Homoclinic:=subs(THICKNESS(3)=THICKNESS(0),[Homoclinic]):

display(Homoclinic,insequence=true);

> # Program 9c: Another animation of a homoclinic bifurcation.

> # Example 10: Figure 9.2.

> restart:with(plots):with(DEtools):

deq1:=diff(x(t),t)=y(t):

deq2:=diff(y(t),t)=x(t)+(x(t))ˆ2-x(t)*y(t)+lambda*y(t):

bifdeq1:=(parameter)->subs(lambda=parameter,deq1):

bifdeq2:=(parameter)->subs(lambda=parameter,deq2):

Homoclinic:=seq(DEplot({bifdeq1(’i/80-1.5’),bifdeq2(’i/80-1.5’)},

[x(t),y(t)],0..80,[[x(0)=-0.4,y(0)=0]],y=-1..1,x=-2..0,arrows=NONE,

stepsize=0.1,linecolour=blue),i=0..80):

Homoclinic:=subs(THICKNESS(3)=THICKNESS(0),[Homoclinic]):

display(Homoclinic,insequence=true);
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9.6 Exercises
1. Prove that the origin of the system

ẋ = y − F(G(x)), ẏ = −G′(x)

2
H(G(x))

is a center using the transformation u2 = G(x) and the classical symmetry
argument.

2. Fix a lexicographical order x � y � z. Divide the multivariate polynomial
p = x3 +y3 +z3 by the ordered list of polynomials {x+3y, xy2 −x, y−z}.
Repeat the division with the divisors listed as {xy2 − x, x + 3y, y − z}.

3. Use Maple to compute a Gröbner basis for the set of polynomials{
y2 − x3 + x, y3 − x2

}
under lexicographical, degree lexicographical, and degree reverse lexico-
graphical ordering, respectively. Solve the simultaneous equations y2 −x3 +
x = 0, y3 − x2 = 0 for x and y.

4. Write a program to compute the first seven Lyapunov quantities of the Lié-
nard system

(9.11) ẋ = y − (a1x + a2x
2 + · · · + a13x

13), ẏ = −x.

Prove that at most six small-amplitude limit cycles can be bifurcated from
the origin of system (9.11).

5. Consider the system

ẋ = y − (a1x + a3x
3 + · · · + a2n+1x

2n+1), ẏ = −x.

Prove by induction that at most n small-amplitude limit cycles can be bifur-
cated from the origin.

6. Write a program to compute the first five Lyapunov quantities for the Liénard
system

ẋ = y−(a1x+a2x
2 +· · ·+a7x

7), ẏ = −(x+b2x
2 +b3x

3 +· · ·+b6x
6).

Prove that Ĥ (4, 2) = 2, Ĥ (7, 2) = 4, and Ĥ (3, 6) = 4. Note that in Ĥ (u, v),
u is the degree of F and v is the degree of g.

7. Consider the generalized mixed Rayleigh–Liénard oscillator equations given
by

ẋ = y, ẏ = −x − a1y − b30x
3 − b21x

2y − b41x
4y − b03y

3.

Prove that at most three small-amplitude limit cycles can be bifurcated from
the origin.
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8. Plot a phase portrait for the system

ẋ = y, ẏ = x + x2.

Determine an equation for the curve on which the homoclinic loop lies.

9. Consider the Liénard system given by

ẋ = y − ε(a1x + a2x
2 + a3x

3), ẏ = −x.

Prove that for sufficiently small ε, there is at most one limit cycle that is
asymptotic to a circle of radius

r =
√

4|a1|
3|a3| .

10. Using the Maple package, investigate the system

ẋ = y, ẏ = x − x3 + ε(λy + x2y)

when ε = 0.1 for values of λ from −1 to −0.5. How many limit cycles are
there at most?
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The Second Part of Hilbert’s Sixteenth
Problem

Aims and Objectives
• To describe the second part of Hilbert’s sixteenth problem.

• To review the main results on the number of limit cycles of planar polynomial
systems.

• To consider the flow at infinity after Poincaré compactification.

• To review the main results on the number of limit cycles of Liénard systems.

• To prove two theorems concerning limit cycles of certain Liénard systems.

On completion of this chapter, the reader should be able to

• state the second part of Hilbert’s sixteenth problem;

• describe the main results for this problem;

• compactify the plane and construct a global phase portrait which shows the
behavior at infinity for some simple systems;

• compare local and global results;

• prove that certain systems have a unique limit cycle;

• prove that a limit cycle has a certain shape for a large parameter value.

S. Lynch, Dynamical Systems with Applications using MapleTM  
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The second part of Hilbert’s sixteenth problem is stated and the main results
are listed. To understand these results, it is necessary to introduce Poincaré com-
pactification, where the plane is mapped onto a sphere and the behavior on the
equator of the sphere represents the behavior at infinity for planar systems.

Many autonomous systems of two-dimensional differential equations can
be transformed to systems of Liénard type. In recent years, there have been many
results published associated with Liénard systems. The major results for both global
and local bifurcations of limit cycles for these systems are listed.

A method for proving the existence, uniqueness and the hyperbolicity of a
limit cycle is illustrated in this chapter, and the Poincaré–Bendixson theorem is
applied to determine the shape of a limit cycle when a parameter is large.

10.1 Statement of Problem and Main Results
Poincaré began investigating isolated periodic cycles of planar polynomial vector
fields in the 1880s. However, the general problem of determining the maximum
number and relative configurations of limit cycles in the plane has remained unre-
solved for over a century. Recall that limit cycles in the plane can correspond to
steady-state behavior for a physical system (see Chapter 6), so it is important to
know how many possible steady states there are.

In 1900, David Hilbert presented a list of 23 problems to the International
Congress of Mathematicians in Paris. Most of the problems have been solved, either
completely or partially. However, the second part of the sixteenth problem remains
unsolved. Il’yashenko [6] presented a centennial history of Hilbert’s sixteenth
problem, and Jibin Li [5] has written a review article of the major results up
to 2003.

The Second Part of Hilbert’s Sixteenth Problem. Consider planar polynomial
systems of the form

ẋ = P(x, y), ẏ = Q(x, y),(10.1)

where P and Q are polynomials in x and y. The question is to estimate the maximal
number and relative positions of the limit cycles of system (10.1). Let Hn denote
the maximum possible number of limit cycles that system (10.1) can have when P

and Q are of degree n. More formally, the Hilbert numbers Hn are given by

Hn = sup{π(P, Q) : ∂P, ∂Q ≤ n},
where ∂ denotes the degree of” and π(P, Q) is the number of limit cycles of system
(10.1).

Dulac’s theorem states that a given polynomial system cannot have infinitely
many limit cycles. This theorem has only recently been proved independently by
Ecalle et al. [19] and Il’yashenko [17], respectively. Unfortunately, this does not
imply that the Hilbert numbers are finite.
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Of the many attempts to make progress in this question, one of the more
fruitful approaches has been to create vector fields with as many isolated periodic
orbits as possible using both local and global bifurcations. There are relatively few
results in the case of general polynomial systems even when considering local bi-
furcations. Bautin [27] proved that no more than three small-amplitude limit cycles
could bifurcate from a critical point for a quadratic system. For a homogeneous
cubic system (no quadratic terms), Sibirskii [26] proved that no more than five
small-amplitude limit cycles could be bifurcated from one critical point. Zoladek
[13] recently found an example in which 11 limit cycles could be bifurcated from
the origin of a cubic system, but he was unable to prove that this was the maximum
possible number.

Although easily stated, Hilbert’s sixteenth problem remains almost com-
pletely unsolved. For quadratic systems, Shi Songling [22] has obtained a lower
bound for the Hilbert number H2 ≥ 4. A possible global phase portrait showing
the configuration of the limit cycles is given in Figure 10.1. The line at infinity is
included and the properties on this line are determined using Poincaré compacti-
fication, which is described in Section 10.2. There are three small-amplitude limit
cycles around the origin and at least one other surrounding another critical point.
Some of the parameters used in this example are very small.

Limit cycle

limit cycles
Small-amplitude

Figure 10.1: A possible configuration for a quadratic system with four limit cycles:
one of large amplitude and three of small amplitude.

Blows and Rousseau [14] considered the bifurcation at infinity for poly-
nomial vector fields and give examples of cubic systems having the following
configurations:

{(4), 1}, {(3), 2}, {(2), 5}, {(4), 2}, {(1), 5}, and {(2), 4},
where {(l), L} denotes the configuration of a vector field with l small-amplitude
limit cycles bifurcated from a point in the plane and L large-amplitude limit cycles
simultaneously bifurcated from infinity. There are many other configurations pos-
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sible, some involving other critical points in the finite part of the plane as shown
in Figure 10.2. Recall that a limit cycle must contain at least one critical point.

By considering cubic polynomial vector fields, in 1985 Li Jibin and Li Chunfu
[20] produced an example with 11 limit cycles by bifurcating limit cycles out of
homoclinic and heteroclinic orbits; see Figure 10.2. Yu Pei and Han Maoan [4]
have more recently managed to show that H3 ≥ 12 by bifurcating exactly 12
small-amplitude limit cycles (2 nests of 6) from a cubic system with 1 saddle point
at the origin and 2 focus points symmetric about the origin.

Figure 10.2: A possible configuration for a cubic system with 11 limit cycles.

Returning to the general problem, in 1995 Christopher and Lloyd [12] con-
sidered the rate of growth of Hn as n increases. They showed that Hn grows at least
as rapidly as n2 log n. Other rates of growth of Hn with n are presented in [5].

In recent years, the focus of research in this area has been directed at a
small number of classes of systems. Perhaps the most fruitful has been the Liénard
system.

10.2 Poincaré Compactification
The method of compactification was introduced by Henri Poincaré at the end of the
19th century. By making a simple transformation, it is possible to map the phase
plane onto a sphere. Note that the plane can be mapped to both the upper and lower
hemispheres. In this way, the points at infinity are transformed to the points on
the equator of the sphere. Suppose that a point (x, y) in the plane is mapped to
a point (X, Y, Z) on the upper hemisphere of a sphere, say, S2 = {(X, Y, Z) ∈
�3 : X2 + Y 2 + Z2 = 1}. (Note that it is also possible to map onto the lower
hemisphere.) The equations defining (X, Y, Z) in terms of (x, y) are given by

X = x√
1 + r2

, Y = y√
1 + r2

, Z = 1√
1 + r2

,

where r2 = x2 + y2. A central projection is illustrated in Figure 10.3.
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Y

y

Z

X
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S

(x,y)
(X,Y,Z )

Figure 10.3: A mapping of (x, y) in the plane onto (X, Y, Z) on the upper part of
the sphere.

Consider the autonomous system (10.1). Convert to polar coordinates. Thus,
system (10.1) transforms to

ṙ = rnfn+1(θ) + rn−1fn−1(θ) + · · · + f1(θ),

θ̇ = rn−1gn+1(θ) + rn−2gn−1θ + · · · + r−1g1(θ),
(10.2)

where fm and gm are polynomials of degree m in cos θ and sin θ .
Let ρ = 1

r
. Hence, ρ̇ = − ṙ

r2 , and system (10.2) becomes

ρ̇ = −ρfn+1(θ) + O(ρ2), θ̇ = gn+1(θ) + O(ρ).

Theorem 1. The critical points at infinity are found by solving the equations
ρ̇ = θ̇ = 0 on ρ = 0, which is equivalent to solving

gn+1(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ) = 0,

where Pn and Qn are homogeneous polynomials of degree n. Note that the solutions
are given by the pairs θi and θi +π . As long as gn+1(θ) is nonzero, there are n+1
pairs of roots and the flow is clockwise when gn+1(θ) < 0 and it is counterclockwise
when gn+1(θ) > 0.

To determine the flow near the critical points at infinity, one must project the
hemisphere with X > 0 onto the plane X = 1 with axes y and z or project the
hemisphere with Y > 0 onto the plane Y = 1 with axes x and z. The projection of
the sphere S2 onto these planes is depicted in Figure 10.4.

If n is odd, the antinodal points on S2 are qualitatively equivalent. If n is
even, the antinodal points are qualitatively equivalent, but the direction of the flow
is reversed.

The flow near a critical point at infinity can be determined using the following
theorem.
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Z
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xy

z

z
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Figure 10.4: The projections used to determine the behavior at infinity.

Theorem 2. The flow defined on the yz plane (X = ±1), except the points
(0, ±1, 0), is qualitatively equivalent to the flow defined by

±ẏ = yznP

(
1

z
,
y

z

)
− znQ

(
1

z
,
y

z

)
, ±ż = zn+1P

(
1

z
,
y

z

)
,

where the direction of the flow is determined from gn+1(θ).
In a similar way, the flow defined on the xz plane (Y = ±1), except the points

(±1, 0, 0), is qualitatively equivalent to the flow defined by

±ẋ = xznQ

(
x

z
,

1

z

)
− znP

(
x

z
,

1

z

)
, ±ż = zn+1Q

(
x

z
,

1

z

)
,

where the direction of the flow is determined from gn+1(θ).

Example 1. Construct global phase portraits, including the flow at infinity, for the
following linear systems:

(a) ẋ = −x + 2y, ẏ = 2x + 2y;

(b) ẋ = x + y, ẏ = −x + y.

Solutions.

(a) The origin is a saddle point with eigenvalues and corresponding eigenvectors
given by λ1 = 3, (1, 2)T and λ2 = −2, (2, −1)T . The critical points at
infinity satisfy the equation g2(θ) = 0, where

g2(θ) = cos θQ1(cos θ, sin θ) − sin θP1(cos θ, sin θ).

Now

g2(θ) = 2 cos2 θ + 3 cos θ sin θ − 2 sin2 θ.
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Figure 10.5: The function g2(θ).

The roots are given by θ1 = tan−1(2) radians, θ2 = tan−1(2) + π radians,
θ3 = tan−1(− 1

2 ) radians, and θ4 = tan−1(− 1
2 ) + π radians.

A plot of g2(θ) is given in Figure 10.5.

The flow near a critical point at infinity is qualitatively equivalent to the flow
of the system

±ẏ = yz

(
−1

2
+ 2y

z

)
− z

(
2

z
− 2y

z

)
, ±ż = z2

(
−1

z
+ 2y

z

)
.

From Figure 10.5, the flow is counterclockwise if tan−1(− 1
2 ) < θ <

tan−1(2). Therefore, the flow at infinity is determined by the system

−ẏ = −3y + 2y2 − 2, −ż = −z + 2yz.

There are critical points at A = (2, 0) and B = (− 1
2 , 0) in the yz plane.

Point A is a stable node and point B is an unstable node. A phase portrait is
given in Figure 10.6.

Since n is odd, the antinodal points are qualitatively equivalent. A global
phase portrait is shown in Figure 10.7.

(b) The origin is an unstable focus and the flow is clockwise. The critical points
at infinity satisfy the equation g2(θ) = 0, where

g2(θ) = cos θQ1(cos θ, sin θ)−sin θP1(cos θ, sin θ) = −(cos2 θ +sin2 θ).
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Figure 10.6: Some trajectories in the yz plane (X = 1) that define the flow at
infinity.

y = –x/2

y = 2x

Figure 10.7: A global phase portrait for Example 1(a).

There are no roots for g2(θ), so there are no critical points at infinity. A
global phase portrait is given in Figure 10.8.

Example 2. Show that the system given by

ẋ = −x

2
− y − x2 + xy + y2, ẏ = x(1 + x − 3y)

has at least two limit cycles.

Solution. There are two critical points at O = (0, 0) and A = (0, 1). The Jacobian
matrix is given by



10.2. Poincaré Compactification 227

Figure 10.8: A global phase portrait for Example 1(b). There are no critical points
at infinity and the flow is clockwise.

J =
( − 1

2 − 2x + y −1 + x + 2y

1 + 2x − 3y −3x

)
.

Now

JO =
( − 1

2 −1
1 0

)
and JA =

( 1
2 1

−2 0

)
.

Therefore, O is a stable focus and A is an unstable focus. On the line L1 : 1 + x −
3y = 0, ẏ = 0 and ẋ < 0, so the flow is transverse to L1.

The critical points at infinity satisfy the equation g3(θ) = 0, where

g3(θ) = cos θQ2(cos θ, sin θ) − sin θP2(cos θ, sin θ).

Now

g3(θ) = cos3 θ − 2 cos2 θ sin θ − cos θ sin2 θ − sin3 θ.

A plot for g3(θ) is given in Figure 10.9.
There are two roots for g3(θ): θ1 = 0.37415 radians and θ2 = 3.51574

radians. The flow near a critical point at infinity is qualitatively equivalent to the
flow of the system

±ẏ = −yz

2
− y2z + 2y + y2 + y3 − z − 1,

±ż = −z2

2
− yz2 − z + yz + y2z.

There is one critical point at (y, z) = (0.39265, 0), which is a saddle point.
Since n is even, the antinodal point is also a saddle point, but the direction of the
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Figure 10.9: The function g3(θ).

flow is reversed. The direction of the flow may be established by inspecting g3(θ)

in Figure 10.9.
Part of the global phase portrait is shown in Figure 10.10, and from the

corollary to the Poincaré–Bendixson theorem, there are at least two limit cycles.
If the system is nonlinear and there are no critical points at infinity, it is also

possible to bifurcate limit cycles from infinity; see, for example, the work of Blows
and Rousseau [14].

Marasco and Tenneriello [3] use Mathematica to propose methods that give
the Fourier series of the periodic solutions and period of planar systems in the
presence of isochronous centers and unstable limit cycles.

10.3 Global Results for Liénard Systems
Consider polynomial Liénard equations of the form

(10.3) ẍ + f (x)ẋ + g(x) = 0,

where f (x) is known as the damping coefficient and g(x) is called the restoring
coefficient. Equation (10.3) corresponds to the class of systems

(10.4) ẋ = y, ẏ = −g(x) − f (x)y,

in the phase plane. Liénard applied the change of variable Y = y + F(x), where
F(x) = ∫ x

0 f (s) ds, to obtain an equivalent system in the so-called Liénard plane:

ẋ = Y − F(x), Ẏ = −g(x).(10.5)

For the critical point at the origin to be a nondegenerate focus or center, the condi-
tions g(0) = 0 and g′(0) > 0 are imposed. Periodic solutions of (10.5) correspond
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SF

UF

Figure 10.10: A global phase portrait showing at least two limit cycles. UF and
SF denote an unstable and stable focus, respectively.

to limit cycles of (10.2) and (10.5). There are many examples in both the natural
sciences and technology where these and related systems are applied. The differen-
tial equation is often used to model either mechanical systems or electric circuits,
and in the literature, many systems are transformed to Liénard type to aid in the
investigations. For a list of applications to the real world, see, for example, Mor-
eira [16]. In recent years, the number of results for this class of system has been
phenomenal, and the allocation of this topic to a whole section of the book is well
justified.

These systems have proved very useful in the investigation of multiple limit
cycles and also when proving existence, uniqueness, and hyperbolicity of a limit
cycle. Let ∂ denote the degree of a polynomial and let H(i, j) denote the maximum
number of global limit cycles, where i is the degree of f and j is the degree of g.
The main global results for systems (10.2) and (10.5) to date are as follows:

• In 1928, Liénard (see [15, Chapter 4]) proved that when ∂g = 1 and F is a
continuous odd function, which has a unique root at x = a and is monotone
increasing for x ≥ a, then (10.5) has a unique limit cycle.

• In 1973, Rychkov [25] proved that if ∂g = 1 and F is an odd polynomial of
degree five, then (10.5) has at most two limit cycles.

• In 1976, Cherkas [24] gave conditions in order for a Liénard equation to
have a center.

• In 1977, Lins et al. [23] proved that H(2, 1) = 1. They also conjectured that
H(2m, 1) = H(2m + 1, 1) = m, where m is a natural number.

• In 1988, Coppel [18] proved that H(1, 2) = 1.
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• In 1992, Zhang Zhifen et al. [15] proved that a certain generalized Liénard
system has a unique limit cycle.

• In 1996, Dumortier and Chengzhi [9] proved that H(1, 3) = 1.

• In 1997, Dumortier and Chengzhi [10] proved that H(2, 2) = 1.

• In 2005, Jiang et al. [2] proved that when f and g are odd polynomials,
H(5, 3) = 2.

• In 2007, Dumortier et al. [1] proved that the conjecture by Lins et al. from
1977 was incorrect.

Giacomini and Neukirch [8] introduced a new method to investigate the
limit cycles of Liénard systems when ∂g = 1 and F(x) is an odd polynomial.
They were able to give algebraic approximations to the limit cycles and obtained
information on the number and bifurcation sets of the periodic solutions even when
the parameters are not small. Other work has been carried out on the algebraicity
of limit cycles, but it is beyond the scope of this book.

Limit cycles were discussed in some detail in Chapter 4, and a method for
proving the existence and uniqueness of a limit cycle was introduced. Another
method for proving the existence, uniqueness, and hyperbolicity of a limit cycle is
illustrated in Theorem 4.

Consider the general polynomial system

ẋ = P(x, y), ẏ = Q(x, y),

where P and Q are polynomials in x and y, and define X = (P, Q) to be the vector
field. Let a limit cycle, say, �(t) = (x(t), y(t)), have period T .

Definition 1. The quantity
∫
�

div(X) dt is known as the characteristic exponent.

Theorem 3. Suppose that∫
�

div(X) dt =
∫ T

0

(
∂P

∂x
+ ∂Q

∂y

)
(x(t), y(t)) dt.

Then

(i) � is hyperbolic attracting if
∫
�

div(X) dt < 0;

(ii) � is hyperbolic repelling if
∫
�

div(X) dt > 0.

Theorem 4. Consider the Liénard system

ẋ = y − (a1x + a2x
2 + a3x

3), ẏ = −x.(10.6)

There exists a unique hyperbolic limit cycle if a1a3 < 0.
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Proof. The method is taken from the paper of Lins et al. [23]. Note that the origin
is the only critical point. The flow is horizontal on the line x = 0 and vertical on the
curve y = a1x + a2x

2 + a3x
3. It is not difficult to prove that a trajectory starting

on the positive (or negative) y-axis will meet the negative (or positive) y-axis. The
solution may be divided into three stages:

I. Every limit cycle of system (10.6) must cross both of the lines given by

L1 : x0 = −
√

−a1

a3
and L2 : x1 =

√
−a1

a3
.

II. System (10.6) has at least one and at most two limit cycles; one of them is
hyperbolic.

III. System (10.6) has a unique hyperbolic limit cycle.

Stage I. Consider the Lyapunov function given by

V (x, y) = e−2a2y

(
y − a2x

2 + 1

2a2

)
.

Now

dV

dt
= 2a2e

−2a2yx2(a1 + a3x
2).

The Lyapunov function is symmetric with respect to the y-axis since V (x, y) =
V (−x, y), and there is a closed level curve V (x, y) = C that is tangent to both
L1 and L2. Since dV

dt
does not change sign inside the disk V (x, y) = C, no limit

cycle can intersect the disk, which proves Stage I.

Stage II. Suppose that there are two limit cycles γ1 ⊂ γ2 surrounding the origin
as in Figure 10.11.

Suppose that a1 < 0 and a3 > 0. Then the origin is unstable. Let γ1 be the
innermost periodic orbit, which must be attracting on the inside. Therefore,∫

γ1

div(X) dt =
∫

γ1

−(a1 + 2a2x + 3a3x
2) ≤ 0.

Let Pi and Qi , i = 0, 1, 2, 3, be the points of intersection of γ1 and γ2, respectively,
with the lines L1 and L2. Now

∫
γ1

x dt = ∫
γ1

− dy
dt

dt = 0 and similarly for the
periodic orbit γ2.

Consider the branches P0P1 and Q0Q1 on γ1 and γ2, respectively. The flow
is never vertical on these branches. Hence, one may parameterize the integrals by
the variable x. Thus,∫

P0P1

−(a1 + 3a3x
2) dt =

∫ x1

x0

−(a1 + 3a3x
2)

yγ1(x) − F(x)
dx
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Figure 10.11: Two limit cycles crossing the lines L1 and L2.

and ∫
Q0Q1

−(a1 + 3a3x
2) dt =

∫ x1

x0

−(a1 + 3a3x
2)

yγ2(x) − F(x)
dx.

In the region x0 < x < x1, the quantity −(a1 + 3a3x
2) > 0 and yγ2(x) −

F(x) > yγ1(x) − F(x) > 0. It follows that∫
Q0Q1

−(a1 + 3a3x
2) dt <

∫
P0P1

−(a1 + 3a3x
2) dt.

Using similar arguments, it is not difficult to show that∫
Q2Q3

−(a1 + 3a3x
2) dt <

∫
P2P3

−(a1 + 3a3x
2) dt.

Consider the branches P1P2 and Q1Q2 on γ1 and γ2, respectively. The flow
is never horizontal on these branches. Hence, one may parameterize the integrals
by the variable y. Thus,

∫
P1P2

−(a1 + 3a3x
2) dt =

∫ y2

y1

(a1 + 3a3(xγ1(y))2)

xγ1

dy

and ∫
Q1Q2

−(a1 + 3a3x
2) dt =

∫ y2

y1

−(a1 + 3a3(xγ2(y))2)

xγ2

dy.

In the region y1 < y < y2, xγ2(y) > xγ1(y). It follows that∫
Q1Q2

−(a1 + 3a3x
2) dt <

∫
P1P2

−(a1 + 3a3x
2) dt.
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Using similar arguments, it is not difficult to show that∫
Q3Q0

−(a1 + 3a3x
2) dt <

∫
P3P0

−(a1 + 3a3x
2) dt.

Thus, adding all of the branches together,∫
γ2

div(X) dt <

∫
γ1

div(X) dt ≤ 0,

which proves Stage II.

Stage III. Since the origin is unstable and
∫
γ2

div(X) dt <
∫
γ1

div(X) dt ≤ 0,
the limit cycle γ2 is hyperbolic stable and the limit cycle γ1 is semistable. By
introducing a small perturbation such as ẋ = y − F(x) − εx, it is possible to
bifurcate a limit cycle from γ1 that lies between γ2 and γ1. Therefore, system
(10.6) has at least three limit cycles, which contradicts the result at Stage II. Hence,
system (10.6) has a unique hyperbolic limit cycle.

A Liénard System with a Large Parameter. Consider the parameterized cubic
Liénard equation given by

ẍ + µf (x)ẋ + g(x) = 0,

where f (x) = −1 + 3x2 and g(x) = x, which becomes

(10.7) ẋ = µy − µF(x), µẏ = −g(x),

where F(x) = ∫ x

0 f (s) ds = −x + x3, in the Liénard plane. Liénard (see [15,
Chapter 4]) proved that system (10.7) has a unique limit cycle. Systems containing
small parameters were considered in Chapter 9 using Melnikov integrals.

The obvious question then is, what happens when µ is large? Figure 10.12
shows the limit cycle behavior in the Liénard and tx planes when µ = 20 for
system (10.7).

Let µ = 1
ε
. Then system (10.7) can be written as an equivalent system in the

form

(10.8) εẋ = y − F(x), ẏ = −εg(x).

Theorem 5. Consider system (10.8) and the Jordan curve J shown in Figure 10.13.
As µ → ∞ or, alternatively, ε → 0, the limit cycle tends toward the piecewise
analytic Jordan curve J .

Proof. The method of proof involves the Poincaré–Bendixson theorem from Chap-
ter 4. Thus, everything is reduced to the construction of an annular region A that is
positively invariant and that contains no critical points. The construction is shown
in Figure 10.14.
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Figure 10.12: (a) A limit cycle for the cubic system when F(x) = −x + x3; the
function y = F(x) is also shown. (b) Periodic behavior in the tx plane.

y

x

J

y = F(x)

Figure 10.13: The Jordan curve and the function y = F(x).

Note that system (10.8) is symmetric about the y-axis, so we need only
consider one-half of the plane.

First, consider the outer boundary. The arc 1-2 is a horizontal line and 2-3 is
a vertical line from the graph y = F(x) to the graph y = F(x) − h, where h is a
small constant. The arc 3-4 follows the y = F(x) − h curve, and the line 4-5 is a
tangent.

Now consider the inner boundary. The line 6-7 is sloped below the horizontal,
and the line 7-8 is vertical and meets the curve y = F(x). The arc 8-9 follows the
curve y = F(x), and the line 9-10 is horizontal.
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Figure 10.14: Construction of the inner and outer boundaries of the annular region
that forms a positively invariant set in one-half of the plane. A similar construction
is used in the other half of the plane using symmetry arguments.

To prove that the region is positively invariant, one must show that the marked
arrows point in the directions indicated in Figure 10.14. Consider each arc sepa-
rately.

Notation. For any point n in Figure 10.14, let F ′(n) and g(n) be the values of
these functions at the abscissa of n.

Arc 1-2. On this line, ẏ < 0 since ẏ = −x and x > 0.

Arc 2-3. On this line, y ≤ F(x), so εẋ = y − F(x) ≤ 0. Note that ẏ < 0 at
point 2.

Arc 3-4. Suppose that p is a point on this arc. The slope of a trajectory crossing
this arc is given by

dy

dx

∣∣∣∣
p

= −ε2g(p)

−h
<

ε2g(3)

h
,
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and

dy

dx

∣∣∣∣
p

→ 0,

as ε → 0. Therefore, for ε small enough,

dy

dx

∣∣∣∣
p

< F ′(4) < F ′(p)

on the arc. Since ẋ < 0 along the arc, trajectories cross the boundary inward.

Arc 4-5. Since |y − F(x)| > h, the slope of the curve 4-5 is

dy

dx

∣∣∣∣
4

<
ε2g(4)

h
,

which tends to zero as ε → 0. Once more, ẋ < 0 on this arc, for ε small enough,
and the pointing is inward.

Arc 6-7. Let d1 be the vertical distance of the line 7-8. For d1 small enough,
along the line 6-7, |y − F(x)| > d1. Thus, the slope of the curve at a point q, say,
on the line 6-7, is given by

dy

dx

∣∣∣∣
q

<
ε2g(q)

d1
<

ε2g(7)

d1
,

which tends to zero as ε → 0. Since ẋ > 0 on this arc, for ε small enough the
pointing will be as indicated in Figure 10.14.

Arc 7-8. On this line, y − F(x) > 0, so ẋ > 0.

Arc 8-9. On the curve, y = F(x) with x > 0, ẏ < 0, and ẋ = 0.

Arc 9-10. On this line, y − F(x) < 0 and ẏ < 0.

Using similar arguments on the left-hand side of the y-axis, a positively
invariant annulus can be constructed. Since system (10.8) has a unique critical
point at the origin, the Poincaré–Bendixson theorem can be applied to prove that
there is a limit cycle in the annular region A. For suitably small values of h and d1,
the annular region will be arbitrarily near the Jordan curve J . Therefore, if �(ε) is
the limit cycle, then �(ε) → J as ε → 0.

10.4 Local Results for Liénard Systems
Although the Liénard equation (10.5) appears simple enough, the known global
results on the maximum number of limit cycles are scant. By contrast, if the analysis
is restricted to local bifurcations, then many more results may be obtained. The
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method for bifurcating small-amplitude limit cycles is given in Chapter 9. Consider
the Liénard system

ẋ = y, ẏ = −g(x) − f (x)y,(10.9)

where f (x) = a0 +a1x +a2x
2 +· · ·+amxm and g(x) = x +b2x

2 +b3x
3 +· · ·+

bnx
n; m and n are natural numbers. Let Ĥ (m, n) denote the maximum number

of small-amplitude limit cycles that can be bifurcated from the origin for system
(10.9), where m is the degree of f and n is the degree of g.

In 1984, Blows and Lloyd [21] proved the following results for system (10.9):

• If ∂f = m = 2i or 2i + 1, then Ĥ (m, 1) = i.

• If g is odd and ∂f = m = 2i or 2i + 1, then Ĥ (m, n) = i.

In addition to the above, the author has proved the following results by in-
duction.

• If ∂g = n = 2j or 2j + 1, then Ĥ (1, n) = j .

• If f is even, ∂f = 2i, then Ĥ (2i, n) = i.

• If f is odd, ∂f = 2i+1 and ∂g = n = 2j +2 or 2j +3; then Ĥ (2i+1, n) =
i + j .

• If ∂f = 2, g(x) = x+ge(x), where ge is even and ∂g = 2j ; then Ĥ (2, 2j) =
j .

Christopher and the author [7] have more recently developed a new algebraic
method for determining the Lyapunov quantities, and this has allowed further
computations. Let �·� denote the integer part. Then the new results are as follows:

• Ĥ (2, n) = ⌊ 2n+1
3

⌋
.

• Ĥ (m, 2) = ⌊ 2m+1
3

⌋
.

• Ĥ (3, n) = 2
⌊ 3n+6

8

⌋
, for all 1 < n ≤ 50.

• Ĥ (m, 3) = 2
⌊ 3m+6

8

⌋
, for all 1 < m ≤ 50.

Complementing these results is the calculation of Ĥ (m, n) for specific values of
m and n. The results are presented in Table 10.1.

The ultimate aim is to establish a general formula for Ĥ (m, n) as a function
of the degrees of f and g. Christopher and Lloyd [11] have proven that Table 10.1
is symmetric but only in the restricted cases where the linear coefficient in f (x) is
nonzero. Jiang et al. [2] have recently started work on simultaneous bifurcations
for symmetric Liénard systems. Future work will concentrate on attempting to
complete Table 10.1 and determining a relationship, if any, between global and
local results.
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Table 10.1: The values of Ĥ (m, n) for varying values of m and n.

50 38
49 24 33 38
48 24 32 36

13 6 9 10
12 6 8 10
11 5 7 8
10 5 7 8
9 4 6 8 9
8 4 5 6 9
7 3 5 6 8
6 3 4 6 7
5 2 3 4 6 6
4 2 3 4 4 6 7 8 9 9
3 1 2 2 4 4 6 6 6 8 8 8 10 10 36 38
2 1 1 2 3 3 4 5 5 6 7 7 8 9 32 33
1 0 1 1 2 2 3 3 4 4 5 5 6 6 24 24

1 2 3 4 5 6 7 8 9 10 11 12 13 48 49 50
degree of g
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It is important to note that programming with mathematical packages is a
key tool that has to be used carefully. For example, it may be that two limit cycles
bifurcating from a fine focus cannot be distinguished on a computer screen. There
are always restrictions on how far a package can be used and this presents a good
example of that fact.

10.5 Exercises
1. Draw a global phase portrait for the linear system

ẋ = y, ẋ = −4x − 5y

including the flow at infinity.

2. Draw a global phase portrait for the system

ẋ = −3x + 4y, ẏ = −2x + 3y

and give the equations defining the flow near critical points at infinity.

3. Determine a global phase portrait for the quadratic system given by

ẋ = x2 + y2 − 1, ẏ = 5xy − 5.

4. Draw a global phase portrait for the Liénard system

ẋ = y − x3 − x, ẏ = −y.
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5. Draw a global phase portrait for the Liénard system

ẋ = y − x3 + x, ẏ = −y.

6. Edit the Maple worksheets in Chapters 3 and 4 to compare the limit cycles
for Liénard systems in the phase plane and in the Liénard plane. Plot the
periodic orbits in the xt plane.

7. Use the Maple worksheets in Chapter 3 to investigate the system

ẋ = y − (a1x + a2x
2 + a3x

3), ẏ = −x

for varying values of the parameters a1, a2, and a3.

8. Use Maple to investigate the limit cycles, if they exist, of the system

ẋ = y − ε(a1x + a2x
2 + · · · + aMxM), ẏ = −x,

as the parameter ε varies from zero to infinity. When ε is large, the stepsize
has to be small; in fact, it would be better to use a variable step length in the
numerical solver.

9. Prove Liénard’s theorem, that when ∂g = 1 and F(x) is a continuous odd
function that has a unique root at x = a and is monotone increasing for
x ≥ a, (10.5) has a unique limit cycle.

10. This is quite a difficult question. Consider the Liénard system

(10.10) ẋ = y − F(x), ẏ = −x,

where F(x) = (a1x + a3x
3 + a5x

5) is odd. Prove that system (10.10) has
at most two limit cycles.
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11
Linear Discrete Dynamical Systems

Aims and Objectives
• To introduce recurrence relations for first- and second-order difference equa-

tions.

• To introduce the theory of the Leslie model.

• To apply the theory to modeling the population of a single species.

On completion of this chapter, the reader should be able to

• solve first- and second-order homogeneous linear difference equations;

• find eigenvalues and eigenvectors of matrices;

• model a single population with different age classes;

• predict the long-term rate of growth/decline of the population;

• investigate how harvesting and culling policies affect the model.

This chapter deals with linear discrete dynamical systems, where time is mea-
sured by the number of iterations carried out and the dynamics are not continuous.
In applications, this would imply that the solutions are observed at discrete time
intervals.

Recurrence relations can be used to construct mathematical models of discrete
systems. They are also used extensively to solve many differential equations which
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do not have an analytic solution; the differential equations are represented by
recurrence relations (or difference equations) that can be solved numerically on
a computer. Of course, one has to be careful when considering the accuracy of
the numerical solutions. Ordinary differential equations (ODEs) are used to model
continuous dynamical systems in the first half of the book.

The bulk of this chapter is concerned with a linear discrete dynamical system
that can be used to model the population of a single species. As with continuous
systems, in applications to the real world, linear models generally produce good
results over only a limited range of time. The Leslie model introduced here is useful
when establishing harvesting and culling policies. Nonlinear discrete dynamical
systems will be discussed in the next chapter.

The Poincaré maps introduced in Chapter 8, for example, illustrates how
discrete systems can be used to help in the understanding of how continuous systems
behave.

11.1 Recurrence Relations
This section is intended to give the reader a brief introduction to difference equa-
tions and illustrate the theory with some simple models.

First-Order Difference Equations. A recurrence relation can be defined by a
difference equation of the form

(11.1) xn+1 = f (xn),

where xn+1 is derived from xn and n = 0, 1, 2, 3, . . . . If one starts with an initial
value, say, x0, then iteration of (11.1) leads to a sequence of the form

{xi : i = 0 to ∞} = {x0, x1, x2, . . . , xn, xn+1, . . . }.
In applications, one would like to know how this sequence can be interpreted
in physical terms. Equations of the form (11.1) are called first-order difference
equations because the suffixes differ by 1. Consider the following simple example.

Example 1. The difference equation used to model the interest in a bank account
compounded once per year is given by

xn+1 =
(

1 + 3

100

)
xn, n = 0, 1, 2, 3, . . . .

Find a general solution and determine the balance in the account after 5 years given
that the initial deposit is 10,000 dollars and the interest is compounded annually.

Solution. Using the recurrence relation

x1 =
(

1 + 3

100

)
× 10, 000,
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x2 =
(

1 + 3

100

)
× x1 =

(
1 + 3

100

)2

× 10, 000,

and, in general,

xn =
(

1 + 3

100

)n

× 10, 000,

where n = 0, 1, 2, 3, . . . . Given that x0 = 10, 000 and n = 5, the balance after
5 years will be x5 = 11, 592.74 dollars.

Theorem 1. The general solution of the first-order linear difference equation

(11.2) xn+1 = mxn + c, n = 0, 1, 2, 3, . . . ,

is given by

xn = mnx0 +
⎧⎨
⎩

mn − 1

m − 1
c if m 
= 1

nc if m = 1.

Proof. Applying the recurrence relation given in (11.2),

x1 = mx0 + c,

x2 = mx1 + c = m2x0 + mc + c,

x3 = mx2 + c = m3x0 + m2c + mc + c,

and the pattern in general is

xn = mnx0 + (mn−1 + mn−2 + · · · + m + 1)c.

Using geometric series, mn−1 +mn−2 +· · ·+m+1 = mn−1
m−1 , provided that m 
= 1.

If m = 1, then the sum of the geometric sequence is n. This concludes the proof
of Theorem 1. Note that if |m| < 1 then xn → c

1−m
as n → ∞.

Second-Order Linear Difference Equations. Recurrence relations involving
terms whose suffixes differ by 2 are known as second-order linear difference equa-
tions. The general form of these equations with constant coefficients is

(11.3) axn+2 = bxn+1 + cxn.

Theorem 2. The general solution of the second-order recurrence relation (11.3) is

xn = k1λ
n
1 + k2λ

n
2,

where k1 and k2 are constants and λ1 
= λ2 are the roots of the quadratic equation
aλ2 − bλ − c = 0. If λ1 = λ2, then the general solution is of the form

xn = (k3 + nk4)λ
n
1 .
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Note that when λ1 and λ2 are complex, the general solution can be expressed as

xn = k1λ
n
1 + k2λ

n
2 = k1(re

iθ )n + k2(re
−iθ )n = rn (A cos(nθ) + B sin(nθ)) ,

where A and B are constants. When the eigenvalues are complex, the solution
oscillates and is real.

Proof. The solution of system (11.2) gives us a clue where to start. Assume that
xn = λnk is a solution, where λ and k are to be found. Substituting, (11.3) becomes

aλn+2k = bλn+1k + cλnk

or

λnk(aλ2 − bλ − c) = 0.

Assuming that λnk 
= 0, this equation has solutions if

(11.4) aλ2 − bλ − c = 0.

Equation (11.4) is called the characteristic equation. The difference equation (11.3)
has two solutions, and because the equation is linear, a solution is given by

xn = k1λ
n
1 + k2λ

n
2,

where λ1 
= λ2 are the roots of the characteristic equation.
If λ1 = λ2, then the characteristic equation can be written as

aλ2 − bλ − c = a(λ − λ1)
2 = aλ2 − 2aλ1λ + aλ2

1.

Therefore, b = 2aλ1 and c = −aλ2
1. Now assume that another solution is of the

form knλn. Substituting, (11.3) becomes

axn+2 − bxn+1 − cxn = a(n + 2)kλn+2
1 − b(n + 1)kλn+1

1 − cnkλn
1;

therefore,

axn+2 − bxn+1 − cxn = knλn
1(aλ2

1 − bλ1 − c) + kλ1(2aλ1 − b),

which equates to zero from the above. This confirms that knλn is a solution to
(11.3). Since the system is linear, the general solution is thus of the form

xn = (k3 + nk4)λ
n
1 .

The values of kj can be determined if x0 and x1 are given. Consider the following
simple examples.
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Example 2. Solve the following second-order linear difference equations:

(i) xn+2 = xn+1 + 6xn, n = 0, 1, 2, 3, . . . , given that x0 = 1 and x1 = 2;

(ii) xn+2 = 4xn+1 − 4xn, n = 0, 1, 2, 3, . . . , given that x0 = 1 and x1 = 3;

(iii) xn+2 = xn+1 − xn, n = 0, 1, 2, 3, . . . , given that x0 = 1 and x1 = 2.

Solutions.

(i) The characteristic equation is

λ2 − λ − 6 = 0,

which has roots at λ1 = 3 and λ2 = −2. The general solution is therefore

xn = k13n + k2(−2)n, n = 0, 1, 2, 3, . . . .

The constants k1 and k2 can be found by setting n = 0 and n = 1. The final
solution is

xn = 4

5
3n + 1

5
(−2)n, n = 0, 1, 2, 3, . . . .

(ii) The characteristic equation is

λ2 − 4λ + 4 = 0,

which has a repeated root at λ1 = 2. The general solution is

xn = (k3 + k4n)2n, n = 0, 1, 2, 3, . . . .

Substituting for x0 and x1 gives the solution

xn =
(

1 + n

2

)
2n, n = 0, 1, 2, 3, . . . .

(iii) The characteristic equation is

λ2 − λ + 1 = 0,

which has complex roots λ1 = 1
2 + i

√
3

2 = e
iπ
3 and λ2 = 1

2 − i
√

3
2 = e

−iπ
3 .

The general solution is

xn = k1λ
n
1 + k2λ

n
2, n = 0, 1, 2, 3, . . . .

Substituting for λ1 and λ2, the general solution becomes

xn = (k1 + k2) cos
(nπ

3

)
+ i(k1 − k2) sin

(nπ

3

)
, n = 0, 1, 2, 3, . . . .

Substituting for x0 and x1 gives k1 = 1
2 − i

2
√

3
and k2 = 1

2 + i

2
√

3
, and so

xn = cos
(nπ

3

)
+ √

3 sin
(nπ

3

)
, n = 0, 1, 2, 3, . . . .
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Example 3. Suppose that the national income of a small country in year n is given
by In = Sn + Pn + Gn, where Sn, Pn, and Gn represent national spending by
the population, private investment, and government spending, respectively. If the
national income increases from one year to the next, then assume that consumers
will spend more the following year; in this case, suppose that consumers spend
1
6 of the previous year’s income, then Sn+1 = 1

6In. An increase in consumer
spending should also lead to increased investment the following year; assume that
Pn+1 = Sn+1 − Sn. Substitution for Sn then gives Pn+1 = 1

6 (In − In−1). Finally,
assume that government spending is kept constant. Simple manipulation then leads
to the following economic model:

(11.5) In+2 = 5

6
In+1 − 1

6
In + G,

where In is the national income in year n and G is a constant. If the initial national
income is G dollars and 1 year later is 3

2G dollars, determine

(i) a general solution to this model;

(ii) the national income after 5 years;

(iii) the long-term state of the economy.

Solutions.

(i) The characteristic equation is given by

λ2 − 5

6
λ + 1

6
= 0,

which has solutions λ1 = 1
2 and λ2 = 1

3 . Equation (11.5) also has a constant
term G.Assume that the solution involves a constant term also; try In = k3G.
Then from (11.5),

k3G = 5

6
k3G − 1

6
k3G + G,

and so k3 = 1
1− 5

6 + 1
6

= 3. Therefore, a general solution is of the form

In = k1λ
n
1 + k2λ

n
2 + 3G.

(ii) Given that I0 = G and I1 = 3
2G, simple algebra gives k1 = −5 and k2 = 3.

When n = 5, I5 = 2.856G, to three decimal places.

(iii) As n → ∞, In → 3G, since |λ1| < 1 and |λ2| < 1. Therefore, the economy
stabilizes in the long term to a constant value of 3G. This is obviously a very
crude model.

A general n-dimensional linear discrete population model is discussed in the
following sections using matrix algebra.
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11.2 The Leslie Model
The Leslie model was developed around 1940 to describe the population dynamics
of the female portion of a species. For most species, the number of females is
equal to the number of males and this assumption is made here. The model can be
applied to human populations, insect populations, and animal and fish populations.
The model is an example of a discrete dynamical system. As explained throughout
the text, we live in a nonlinear world and universe; since this model is linear, one
would expect the results to be inaccurate in the long term. However, the model
can give some interesting results and it incorporates some features not discussed in
earlier chapters.As in Chapter 3, the following characteristics are ignored: diseases,
environmental effects, pollution, and seasonal effects.

Assumptions. The females are divided into n age classes; thus, if N is the theo-
retical maximum age attainable by a female of the species, then each age class will
span a period of N

n
equally spaced, days, weeks, months, years, etc. The population

is observed at regular discrete time intervals which are each equal to the length
of one age class. Thus, the kth time period will be given by tk = kN

n
. Define x

(k)
i

to be the number of females in the ith age class after the kth time period. Let bi

denote the number of female offspring born to one female during the ith age class
and let ci be the proportion of females which continue to survive from the ith to
the (i + 1)st age class.

In order for this to be a realistic model, the following conditions must be
satisfied:

(i) bi ≥ 0, 1 ≤ i ≤ n;

(ii) 0 < ci ≤ 1, 1 ≤ i < n.

Obviously, some bi have to be positive in order to ensure that some births do occur
and no ci are zero, otherwise there would be no females in the (i + 1)st age class.

Working with the female population as a whole, the following sets of linear
equations can be derived. The number of females in the first age class after the kth
time period is equal to the number of females born to females in all n age classes
between the time tk−1 and tk; thus,

x
(k)
1 = b1x

(k−1)
1 + b2x

(k−1)
2 + · · · + bnx

(k−1)
n .

The number of females in the (i + 1)st age class at time tk is equal to the number
of females in the ith age class at time tk−1 who continue to survive to enter the
(i + 1)st age class; hence,

x
(k)
i+1 = cix

(k−1)
i .
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Equations of the above form can be written in matrix form, and so⎛
⎜⎜⎜⎜⎜⎜⎝

x
(k)
1

x
(k)
2

x
(k)
3
...

x
(k)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b1 b2 b3 · · · bn−1 bn

c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · cn−1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(k−1)
1

x
(k−2)
2

x
(k−1)
3
...

x
(k−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

or

X(k) = LX(k−1), k = 1, 2, . . . ,

where X ∈ �n and the matrix L is called the Leslie matrix.
Suppose that X(0) is a vector giving the initial number of females in each of

the n age classes; then

X(1) = LX(0),

X(2) = LX(1) = L2X(0),

...

X(k) = LX(k−1) = LkX(0).

Therefore, given the initial age distribution and the Leslie matrix L, it is possible
to determine the female age distribution at any later time interval.

Example 4. Consider a species of bird that can be split into three age groupings:
those aged 0–1 year, those aged 1–2 years, and those aged 2–3 years. The population
is observed once a year. Given that the Leslie matrix is equal to

L =
⎛
⎝ 0 3 1

0.3 0 0
0 0.5 0

⎞
⎠

and the initial population distribution of females is x
(0)
1 = 1000, x

(0)
2 = 2000, and

x
(0)
3 = 3000, compute the number of females in each age group after

(a) 10 years;

(b) 20 years;

(c) 50 years.
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Solution. Using the above,

(a) X(10) = L10X(0) =
⎛
⎝ 5383

2177
712

⎞
⎠ ,

(b) X(20) = L20X(0) =
⎛
⎝ 7740

2388
1097

⎞
⎠ ,

(c) X(50) = L50X(0) =
⎛
⎝ 15695

4603
2249

⎞
⎠ .

The numbers are rounded down to whole numbers since it is not possible to have
a fraction of a living bird. Obviously, the populations cannot keep on growing
indefinitely. However, the model does give useful results for some species when
the time periods are relatively short.

In order to investigate the limiting behavior of the system, it is necessary to
consider the eigenvalues and eigenvectors of the matrix L. These can be used to
determine the eventual population distribution with respect to the age classes.

Theorem 3. Let the Leslie matrix L be as defined above and assume that

(a) bi ≥ 0 for 1 ≤ i ≤ n;

(b) at least two succesive bi are strictly positive; and

(c) 0 < ci ≤ 1 for 1 ≤ i < n.

Then

(i) matrix L has a unique positive eigenvalue, say, λ1;

(ii) λ1 is simple, or has algebraic multiplicity 1;

(iii) the eigenvector—X1, say—corresponding to λ1, has positive components;

(iv) any other eigenvalue, λi 
= λ1, of L satisfies

|λi | < λ1,

and the positive eigenvalue λ1 is called strictly dominant.
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The reader will be asked to prove part (i) in the exercises at the end of the
chapter.

If the Leslie matrix L has a unique positive strictly dominant eigenvalue, then
an eigenvector corresponding to λ1 is a nonzero vector solution of

LX = λ1X.

Assume that x1 = 1; then a possible eigenvector corresponding to λ1 is given by

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
c1
λ1

c1c2
λ2

1
...

c1c2···cn−1
λn−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Assume that L has n linearly independent eigenvectors, say, X1, X2, . . . , Xn.
Therefore, L is diagonizable. If the initial population distribution is given by X(0) =
X0, then there exist constants b1, b2, . . . , bn, such that

X0 = b1X1 + b2X2 + · · · + bnXn.

Since

X(k) = LkX0 and LkXi = λk
i Xi,

then

X(k) = Lk(b1X1 + b2X2 + · · · + bnXn) = b1λ
k
1X1 + b2λ

k
2X2 + · · · + bnλ

k
nXn.

Therefore,

X(k) = λk
1

(
b1X1 + b2

(
λ2

λ1

)k

X2 + · · · + bn

(
λn

λ1

)k

Xn

)
.

Since λ1 is dominant,
∣∣∣ λi

λ1

∣∣∣ < 1 for λi 
= λ1 and
(

λi

λ1

)k → 0 as k → ∞. Thus, for

large k,

X(k) ≈ b1λ
k
1X1.

In the long run, the age distribution stabilizes and is proportional to the vector X1.
Each age group will change by a factor of λ1 in each time period. The vector X1
can be normalized so that its components sum to 1; the normalized vector then
gives the eventual proportions of females in each of the n age groupings.

Note that if λ1 > 1, the population eventually increases; if λ1 = 1, the pop-
ulation stabilizes, and if λ1 < 1, the population eventually decreases.
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Example 5. Determine the eventual distribution of the age classes for Example 4.

Solution. The characteristic equation is given by

det(L − λI) =
∣∣∣∣∣∣

−λ 3 1
0.3 −λ 0
0 0.5 −λ

∣∣∣∣∣∣ = −λ3 + 0.9λ + 0.15 = 0.

The roots of the characteristic equation are

λ1 = 1.023, λ2 = −0.851, λ3 = −0.172,

to three decimal places. Note that λ1 is the dominant eigenvalue.
To find the eigenvector corresponding to λ1, solve⎛

⎝ −1.023 3 1
0.3 −1.023 0
0 0.5 −1.023

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

One solution is x1 = 2.929, x2 = 0.855, and x3 = 0.420. Divide each term by the
sum to obtain the normalized eigenvector

X̂1 =
⎛
⎝ 0.696

0.204
0.1

⎞
⎠ .

Hence, after a number of years, the population will increase by approximately
2.3% every year. The percentage of females aged 0–1 year will be 69.6%; aged
1–2 years will be 20.4%, and aged 2–3 years will be 10%.

11.3 Harvesting and Culling Policies
This section will be concerned with insect and fish populations only since they tend
to be very large. The model has applications when considering insect species which
survive on crops, for example. An insect population can be culled each year by
applying either an insecticide or a predator species. Harvesting of fish populations
is particularly important currently; certain policies have to be employed to avoid
depletion and extinction of the fish species. Harvesting indiscriminately could
cause extinction of certain species of fish from our oceans.

A harvesting or culling policy should only be used if the population is
increasing.

Definition 1. A harvesting or culling policy is said to be sustainable if the number
of fish, or insects, killed and the age distribution of the population remaining are
the same after each time period.
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Assume that the fish or insects are killed in short sharp bursts at the end of
each time period. Let X be the population distribution vector for the species just
before the harvesting or culling is applied. Suppose that a fraction of the females
about to enter the (i + 1)st class are killed, giving a matrix

D =

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn

⎞
⎟⎟⎟⎟⎟⎠ .

By definition, 0 ≤ di ≤ 1, where 1 ≤ i ≤ n. The numbers killed will be given by
DLX and the population distribution of those remaining will be

LX − DLX = (I − D)LX.

In order for the policy to be sustainable, one must have

(11.6) (I − D)LX = X.

If the dominant eigenvalue of (I −D)L is 1, then X will be an eigenvector for
this eigenvalue and the population will stabilize. This will impose certain conditions
on the matrix D. Hence,

I − D =

⎛
⎜⎜⎜⎜⎜⎝

(1 − d1) 0 0 · · · 0
0 (1 − d2) 0 · · · 0
0 0 (1 − d3) · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 − dn)

⎞
⎟⎟⎟⎟⎟⎠

and the matrix, say, M = (I − D)L, is easily computed. The matrix M is also a
Leslie matrix and, hence, has an eigenvalue λ1 = 1 if and only if

(1 − d1)(b1 + b2c1(1 − d1) + b3c1c2(1 − d2)(1 − d3) + · · ·
+ bnc1 · · · cn−1(1 − d1) . . . (1 − dn)) = 1.(11.7)

Only values of 0 ≤ di ≤ 1, which satisfy (11.7) can produce a sustainable policy.
A possible eigenvector corresponding to λ1 = 1 is given by

X1 =

⎛
⎜⎜⎜⎜⎜⎝

1
(1 − d2)c1

(1 − d2)(1 − d3)c1c2
...

(1 − d2) . . . (1 − dn)c1c2 . . . cn−1

⎞
⎟⎟⎟⎟⎟⎠ .

The sustainable population will be C1X1, where C1 is a constant. Consider
the following policies.
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Sustainable Uniform Harvesting or Culling.. Let d = d1 = d2 = · · · = dn;
then (11.6) becomes

(1 − d)LX = X,

which means that λ1 = 1
1−d

. Hence, a possible eigenvector corresponding to λ1 is
given by

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
c1
λ1

c1c2
λ2

1
...

c1c2···cn−1

λn−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Sustainable Harvesting or Culling of the Youngest Class. Let d1 = d and
d2 = d3 = · · · = dn = 0. Then (11.7) becomes

(1 − d)(b1 + b2c1 + b3c1c2 + · · · + bnc1c2 · · · cn−1) = 1,

or, equivalently,

(1 − d)R = 1,

where R is known as the net reproduction rate. Harvesting or culling is only viable
if R > 1, unless you wish to eliminate an insect species. The age distribution after
each harvest or cull is then given by

X1 =

⎛
⎜⎜⎜⎜⎜⎝

1
c1

c1c2
...

c1c2 . . . cn−1

⎞
⎟⎟⎟⎟⎟⎠ .

Definition 2. An optimal sustainable harvesting or culling policy is one in which
either one or two age classes are killed. If two classes are killed, then the older age
class is completely killed.

Example 6. A certain species of fish can be divided into three 6-month age classes
and has Leslie matrix

L =
⎛
⎝ 0 4 3

0.5 0 0
0 0.25 0

⎞
⎠ .
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The species of fish is to be harvested by fishermen using one of four different
policies which are uniform harvesting or harvesting one of the three age classes,
respectively. Which of these four policies are sustainable? Decide which of the
sustainable policies the fishermen should use.

Solution. The characteristic equation is given by

det(L − λI) =
∣∣∣∣∣∣

−λ 4 3
0.5 −λ 0
0 0.25 −λ

∣∣∣∣∣∣ = −λ3 + 2λ + 0.375 = 0.

The eigenvalues are given by λ1 = 1.5, λ2 = −0.191, and λ3 = −1.309, to three
decimal places. The eigenvalue λ1 is dominant and the population will eventually
increase by 50% every 6 months. The normalized eigenvector corresponding to λ1
is given by

X̂1 =
⎛
⎝ 0.529

0.177
0.294

⎞
⎠ .

So, after a number of years there will be 52.9% of females aged 0–6 months; 17.7%
of females aged 6–12 months, and 29.4% of females aged 12–18 months.

If the harvesting policy is to be sustainable, then (11.7) becomes

(1 − d1)(b1 + b2c1(1 − d2) + b3c1c2(1 − d2)(1 − d3)) = 1.

Suppose that hi = (1 − di); then

(11.8) h1h2(2 + 0.375h3) = 1.

Consider the four policies separately.

(i) Uniform harvesting: Let h = (h, h, h). Equation (11.8) becomes

h2(2 + 0.375h) = 1,

which has solutions h = 0.667 and d = 0.333. The normalized eigenvector
is given by

X̂U =
⎛
⎝ 0.720

0.240
0.040

⎞
⎠ .

(ii) Harvesting the youngest age class: Let h = (h1, 1, 1). Equation (11.8) be-
comes

h1(2 + 0.375) = 1,



11.4. Maple Commands 257

which has solutionsh1 = 0.421 andd1 = 0.579.The normalized eigenvector
is given by

X̂A1 =
⎛
⎝ 0.615

0.308
0.077

⎞
⎠ .

(iii) Harvesting the middle age class: Let h = (1, h2, 1). Equation (11.8) be-
comes

h2(2 + 0.375) = 1,

which has solutionsh2 = 0.421 andd2 = 0.579.The normalized eigenvector
is given by

X̂A2 =
⎛
⎝ 0.791

0.167
0.042

⎞
⎠ .

(iv) Harvesting the oldest age class: Let h = (1, 1, h3). Equation (11.8) becomes

1(2 + 0.375h3) = 1,

which has no solutions if 0 ≤ h3 ≤ 1.

Therefore, harvesting policies (i)–(iii) are sustainable and policy (iv) is not.
The long-term distributions of the populations of fish are determined by the normal-
ized eigenvectors X̂U , X̂A1 , and X̂A2 , given above. If, for example, the fishermen
wanted to leave as many fish as possible in the youngest age class, then the policy
which should be adopted is the second age class harvesting. Then 79.1% of the
females would be in the youngest age class after a number of years.

11.4 Maple Commands

> # Program 11a: Solving recurrence relations.

> # Example 1. First-order difference equation.

> restart:b:=evalf(rsolve({x(n+1)=(1+(3/(100)))*x(n),x(0)=10000},x)):

n:=5:evalf(b,7);

11592.74

> # Example 2: Second-order difference equation.

> n:=’n’:

factor(rsolve({x(n+2)=x(n+1)+6*x(n),x(0)=1,x(1)=2},x));

1
5 (−2)n + 4

5 3n
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> # Program 11b: Leslie matrices.

> # Example 4:

> with(LinearAlgebra):

L:=Matrix([[0,3,1],[0.3,0,0],[0,0.5,0]]):

X0:=<<1000,2000,3000>>: # Initial population.

X10:=Lˆ(10).X0;

X10 := V ector(5383.66499999999814, 2177.07749999999896, 712.327499999999759)

> Eigenvectors(L);

(1.02305, −0.850689, −0.172356),

((0.950645, 0.278769, 0.136245), (−0.925557, 0.326403, −0.191846),

(0.184033, −0.320326, 0.929259))

11.5 Exercises
1. The difference equation used to model the length of a carpet, say, ln, rolled

n times is given by

ln+1 = ln + π(4 + 2cn), n = 0, 1, 2, 3, . . . ,

where c is the thickness of the carpet. Solve this recurrence relation.

2. Solve the following second-order linear difference equations:

(a) xn+2 = 5xn+1 − 6xn, n = 0, 1, 2, 3, . . . , if x0 = 1, x1 = 4;

(b) xn+2 = xn+1 − 1
4xn, n = 0, 1, 2, 3, . . . , if x0 = 1, x1 = 2;

(c) xn+2 = 2xn+1 − 2xn, n = 0, 1, 2, 3, . . . , if x0 = 1, x1 = 2;

(d) Fn+2 = Fn+1 + Fn, n = 0, 1, 2, 3, . . . , if F1 = 1 and F2 = 1 (the
sequence of numbers is known as the Fibonacci sequence);

(e) xn+2 = xn+1 + 2xn − f (n), n = 0, 1, 2, . . . , given that x0 = 2 and
x1 = 3, when (i) f (n) = 2, (ii) f (n) = 2n, and (iii) f (n) = en (use
Maple for part (iii) only).

3. Consider a human population that is divided into three age classes; those
aged 0–15 years, those aged 15–30 years, and those aged 30–45 years. The
Leslie matrix for the female population is given by

L =
⎛
⎝ 0 1 0.5

0.9 0 0
0 0.8 0

⎞
⎠ .

Given that the initial population distribution of females is x
(0)
1 = 10,000,

x
(0)
2 = 15,000 and x

(0)
3 = 8,000, compute the number of females in each of

these groupings after
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(a) 225 years;

(b) 750 years;

(c) 1500 years.

4. Consider the following Leslie matrix used to model the female portion of a
species

L =
⎛
⎝ 0 0 6

1
2 0 0
0 1

3 0

⎞
⎠ .

Determine the eigenvalues and eigenvectors of L. Show that there is no
dominant eigenvalue and describe how the population would develop in the
long term.

5. Consider a human population that is divided into five age classes: those aged
0–15 years, those aged 15–30 years, those aged 30–45 years, those aged
45–60 years, and those aged 60–75 years. The Leslie matrix for the female
population is given by

L =

⎛
⎜⎜⎜⎜⎝

0 1 1.5 0 0
0.9 0 0 0 0
0 0.8 0 0 0
0 0 0.7 0 0
0 0 0 0.5 0

⎞
⎟⎟⎟⎟⎠ .

Determine the eigenvalues and eigenvectors of L and describe how the pop-
ulation distribution develops.

6. Given that

L =

⎛
⎜⎜⎜⎜⎜⎝

b1 b2 b3 · · · bn−1 bn

c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · cn−1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where bi ≥ 0, 0 < ci ≤ 1, and at least two successive bi are strictly positive,
prove that p(λ) = 1 if λ is an eigenvalue of L, where

p(λ) = b1

λ
+ b2c1

λ2 + · · · + bnc1c2 · · · cn−1

λn
.

Show the following:

(a) p(λ) is strictly decreasing;
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(b) p(λ) has a vertical asymptote at λ = 0;

(c) p(λ) → 0 as λ → ∞.

Prove that a general Leslie matrix has a unique positive eigenvalue.

7. A certain species of insect can be divided into three age classes: 0–6 months,
6–12 months, and 12–18 months. A Leslie matrix for the female population
is given by

L =
⎛
⎝ 0 4 10

0.4 0 0
0 0.2 0

⎞
⎠ .

Determine the long-term distribution of the insect population. An insecticide
is applied which kills off 50% of the youngest age class. Determine the long-
term distribution if the insecticide is applied every 6 months.

8. Assuming the same model for the insects as in Exercise 7, determine the
long-term distribution if an insecticide is applied every 6 months which kills
10% of the youngest age class, 40% of the middle age class, and 60% of the
oldest age class.

9. In a fishery, a certain species of fish can be divided into three age groups,
each 1 year long. The Leslie matrix for the female portion of the population
is given by

L =
⎛
⎝ 0 3 36

1
3 0 0
0 1

2 0

⎞
⎠ .

Show that, without harvesting, the fish population would double each year.
Describe the long-term behavior of the system if the following policies are
applied:

(a) harvest 50% from each age class;

(b) harvest the youngest fish only, using a sustainable policy;

(c) harvest 50% of the youngest fish;

(d) harvest 50% of the whole population from the youngest class only;

(e) harvest 50% of the oldest fish.

10. Determine an optimal sustainable harvesting policy for the system given in
Exercise 9 if the youngest age class is left untouched.
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Nonlinear Discrete Dynamical
Systems

Aims and Objectives
• To introduce nonlinear one- and two-dimensional iterated maps.

• To investigate period-doubling bifurcations to chaos.

• To introduce the notion of universality.

On completion of this chapter, the reader should be able to

• produce graphical iterations of one-dimensional iterated maps;

• test whether certain systems are chaotic;

• plot bifurcation diagrams;

• apply some of the theory to model simple problems from biology, economics,
neural networks, nonlinear optics, and population dynamics.

Most of the dynamics displayed by highly complicated nonlinear systems
also appear for simple nonlinear systems. The reader is first introduced to the
tent function, which is composed of two straight lines. The graphical method of
iteration is introduced using this simple function since the constructions may be
easily carried out with graph paper, rule, and pencil. The reader is also shown how
to graph composite functions. The system can display periodicity, mixing, and
sensitivity to initial conditions—the essential ingredients for chaos.
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The logistic map is used as a simple model for the population growth of an
insect species. Bifurcation diagrams are plotted and period-doubling bifurcations
to chaos are displayed.

Bifurcation diagrams are plotted for the Gaussian map. Two-dimensional
Hénon maps are investigated, periodic points are found, and chaotic (or strange)
attractors are produced.

The chapter ends with some applications from biology, economics, nonlinear
optics, and neural networks.

12.1 The Tent Map and Graphical Iterations
As a simple introduction to one-dimensional nonlinear discrete dynamical systems,
consider the tent map T : [0, 1] → [0, 1] defined by

T (x) =
{

µx, 0 ≤ x < 1
2

µ(1 − x), 1
2 ≤ x ≤ 1,

where 0 ≤ µ ≤ 2. The tent map is constructed from two straight lines, which
makes the analysis simpler than for truly nonlinear systems. The graph of the T

function may be plotted by hand and is given in Figure 12.1.

0 1
0

x

T

µ/2

Figure 12.1: A graph of the tent function.

Define an iterative map by

(12.1) xn+1 = T (xn),

where xn ∈ [0, 1]. Although the form of the tent map is simple and the equations
involved are linear, for certain parameter values this system can display highly com-
plex behavior and even chaotic phenomena. In fact, most of the features discussed
in other chapters of this text are displayed by this relatively simple system. For
certain parameter values, the mapping undergoes stretching and folding transfor-
mations and displays sensitivity to initial conditions and periodicity. Fortunately,
it is not difficult to carry out simple iterations for system (12.1), as the following
examples demonstrate.
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Example 1. Iterate the tent function numerically for the following µ and x0 values:

(I) µ = 1
2 :

(i) x0 = 1
4

(ii) x0 = 1
2

(iii) x0 = 3
4 ;

(II) µ = 1 :
(i) x0 = 1

3 ,

(ii) x0 = 2
3 ;

(III) µ = 3
2 :

(i) x0 = 3
5 ,

(ii) x0 = 6
13 ,

(iii) x0 = 1
3 ;

(IV) µ = 2 :
(i) x0 = 1

3 ,

(ii) x0 = 1
5 ,

(iii) x0 = 1
7 ,

(iv) x0 = 1
11 .

Solution. A calculator or computer is not needed here. It is very easy to carry
out the iterations by hand. For the sake of simplicity, the iterates will be listed as
{x0, x1, x2, . . . , xn, . . . }. The solutions are as follows:

(I) µ = 1
2 :

(i) { 1
4 , 1

8 , 1
16 , . . . , 1

4×2n , . . . };
(ii) { 1

2 , 1
4 , 1

8 , . . . , 1
2n+1 , . . . };

(iii) { 3
4 , 3

8 , 3
16 , . . . , 3

4×2n , . . . }.
In each case, xn → 0 as n → ∞.

(II) µ = 1:

(i) { 1
3 , 1

3 , 1
3 , . . . , 1

3 , . . . };
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(ii) { 2
3 , 1

3 , 1
3 , . . . , 1

3 , . . . }.
The orbits tend to points of period one in the range

[
0, 1

2

]
.

(III) µ = 3
2 :

(i) { 3
5 , 3

5 , 3
5 , . . . , 3

5 , . . . };
(ii) { 6

13 , 9
13 , 6

13 , 9
13 . . . , 6

13 , 9
13 , . . . };

(iii) { 1
3 , 1

2 , 3
4 , 3

8 , 9
16 , 21

32 , 33
64 , 93

128 , 105
256 , 315

512 , 591
1024 , . . . }.

In case (i), the iterate xn+1 is equal to xn for all n. This type of sequence displays
period-one behavior. In case (ii), the iterate xn+2 is equal to xn for all n, and
the result is period-two behavior. In case (iii), the first 11 iterates are listed, but
other methods need to be used in order to establish the long-term behavior of the
sequence.

(IV) µ = 2:

(i) { 1
3 , 2

3 , 2
3 , . . . , 2

3 , . . . };
(ii) { 1

5 , 2
5 , 4

5 , 2
5 , 4

5 . . . , 2
5 , 4

5 , . . . };
(iii) { 1

7 , 2
7 , 4

7 , 6
7 , 2

7 , 4
7 , 6

7 , . . . , 2
7 , 4

7 , 6
7 , . . . };

(iv) { 1
11 , 2

11 , 4
11 , 8

11 , 6
11 , 10

11 , 2
11 , . . . , 2

11 , 4
11 , 8

11 , 6
11 , 10

11 , . . . }.

The sequences behave as follows: (i) there is period-one behavior, (ii) there is
period-two behavior, (iii) there is a period-three sequence, and (iv) there is a period-
five sequence.

Example 2. Using the tent map defined by (12.1) when µ = 2, compute the first
20 iterates for the following two initial conditions:

(i) x0 = 0.2;

(ii) x0 = 0.2001 = 0.2 + ε.

Solution. The iterates may be computed using Maple. The first 20 iterates for both
initial conditions are listed side-by-side in Table 12.1.

The system clearly shows sensitivity to initial conditions for the parameter
value µ = 2. Comparing the numerical values in the second and third columns, it
is not difficult to see that the sequences diverge markedly when n > 9. This test for
sensitivity to initial conditions gives researchers a simple tool to determine whether
a system is chaotic. A more in-depth description of chaos is given in Chapter 7.

The results of Examples 1 and 2 show that there is a rich variety of dynam-
ics which system (12.1) can display. Indeed, a now famous result due to Li and
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Yorke [11] states that if a system displays period-three behavior, then the system
can display periodic behavior of any period, and they go on to prove that the system
can display chaotic phenomena. Hence, when µ = 2, system (12.1) is chaotic since
it has a period-three sequence (Example 1(IV)(iii)).

Table 12.1: The first 20 iterates for both initial conditions in Example 2.

n xn xn

0 x0 = 0.2 x0 = 0.2001
1 0.4 0.4002
2 0.8 0.8004
3 0.4 0.3992
4 0.8 0.7984
5 0.4 0.4032
6 0.8 0.8064
7 0.4 0.3872
8 0.8 0.7744
9 0.4 0.4512
10 0.8 0.9024
11 0.4 0.1952
12 0.8 0.3904
13 0.4 0.7808
14 0.8 0.4384
15 0.4 0.8768
16 0.8 0.2464
17 0.4 0.4928
18 0.8 0.9856
19 0.4 0.0288
20 0.8 0.0576

Unfortunately, numerical iterations do not always give a clear insight into how
the sequences develop as n gets large. Another popular method used to display the
sequence of iterations more clearly is the so-called graphical method.

The Graphical Method. From an initial point x0, draw a vertical line up to the
function, in this case, T (x). From this point, draw a horizontal line either left
or right to join the diagonal y = x. The x-ordinate corresponds to the iterate
x1 = T (x0). From the point (x1, T (x0)), draw a vertical line up or down to join the
function T (x). Draw a horizontal line from this point to the diagonal at the point
(x2, T (x1)). The first two iterates are shown in Figure 12.2.

The iterative procedure may be summarized as a simple repeated two-step
algorithm:
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0 1
0

x
0

x
1

x
2

T(x
0
)

T(x
1
)

Figure 12.2: A possible graphical iteration when n = 2.

1. Draw a vertical line to the function (evaluation).

2. Draw a horizontal line to the diagonal (feedback); go back to 1.

The algorithm generates successive iterates along the x-axis, corresponding to the
the sequence of points {x0, x1, x2, . . . , xn, . . . }.

To demonstrate the method, the numerical iterations carried out in Examples
1 and 2 will now be repeated using the graphical method.

Example 3. Iterate the tent function graphically for the following µ and x0 values:

(I) µ = 1
2 :

(i) x0 = 1
4 ,

(ii) x0 = 1
2 ,

(iii) x0 = 3
4 ;

(II) µ = 1:

(i) x0 = 1
3 ,

(ii) x0 = 2
3 ;

(III) µ = 3
2 :

(i) x0 = 3
5 ,

(ii) x0 = 6
13 ,

(iii) x0 = 1
3 ;
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(IV) µ = 2 :
(i) x0 = 1

3 ,

(ii) x0 = 1
5 ,

(iii) x0 = 1
7 ,

(iv) x0 = 1
11 .

(V) µ = 2 :
(i) x0 = 0.2,

(ii) x0 = 0.2001.

Solution. Each of the diagrams (Figures 12.3–12.7) can be reproduced using
Maple. Most of the graphical iterations are self-explanatory; however, Fig-
ures 12.5(c) and 12.7 warrant further explanation. When µ = 3

2 , the tent map
displays sensitivity to initial conditions and can be described as being chaotic. The
iterative path plotted in Figure 12.5(c) appears to wander randomly. It is still not
clear whether the path is chaotic or whether the path is periodic of a very high
period. Figure 12.7 clearly shows the sensitivity to initial conditions. Again, it is
not clear in case (ii) whether the path is chaotic or of a very high period.

What is clear from the diagrams is that the three basic properties of chaos—
mixing, periodicity, and sensitivity to initial conditions—are all exhibited for cer-
tain parameter values.

12.2 Fixed Points and Periodic Orbits
Consider the general map

(12.2) xn+1 = f (xn).

Definition 1. A fixed point, or point of period one, of system (12.2) is a point at
which xn+1 = f (xn) = xn, for all n.

For the tent map, this implies that T (xn) = xn, for all n. Graphically, the
fixed points can be found by identifying intersections of the function T (x) with
the diagonal.

As with other dynamical systems, the fixed points of period one can be at-
tracting, repelling, or indifferent. The type of fixed point is determined from the
gradient of the tangent to the function, T (x) in this case, at the fixed point. For
straight-line segments with equation y = mx + c, it can be easily shown that if

• m < −1, the iterative path is repelled and spirals away from the fixed point;

• −1 < m < 0, the iterative path is attracted and spirals in to the fixed point;
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Figure 12.3: Graphical iterations when µ = 1
2 : (a) x0 = 1

4 ; (b) x0 = 1
2 ; and (c)

x0 = 3
4 .

• 0 < m < 1, the iterative path is attracted and staircases in to the fixed point;

• m > 1, the iterative path is repelled and staircases away from the critical
point.

When |m| = 1, the fixed point is neither repelling nor attracting and m = 0
is a trivial case. A test for stability of fixed points for nonlinear iterative maps will
be given in Section 12.3.

Using Definition 1, it is possible to determine the fixed points of period one
for the tent map (12.1). If 0 < µ < 1, the only fixed point is at x = 0 (see Figure
12.8) and since the gradient at x = 0 is less than 1, the fixed point is stable. Note
that the origin is called the trivial fixed point.

When µ = 1, the branch µx of T (x) coincides with the diagonal and all
points lying in the interval 0 ≤ x ≤ 1/2 are of period one. Once the tent function
crosses the diagonal, the origin becomes unstable since the gradient of the tent map
at this point now exceeds 1.

When 1 < µ ≤ 2, there are two fixed points of period one: x1,1 = 0 and
x1,2 = µ

1+µ
(see Figure 12.9).
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Figure 12.4: Graphical iterations when µ = 1: (a) x0 = 1
3 and (b) x0 = 2

3 .
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Figure 12.5: Graphical iterations when µ = 3
2 : (a) x0 = 3

5 ; (b) x0 = 6
13 ; and (c)

x0 = 1
3 , for 200 iterations.

Notation. Throughout this text, the periodic point given by xi,j will denote the j th
point of period i. This notation is useful when determining the number of points of
period i. For example, x1,1 and x1,2 above are the two fixed points of period one.
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Figure 12.6: [Maple] Graphical iterations when µ = 2: (a) x0 = 1
3 ; (b) x0 = 1

5 ;
(c) x0 = 1

7 ; and (d) x0 = 1
11 .
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Figure 12.7: [Maple] Graphical iterations when µ = 2: (a) x0 = 0.2 and (b)
x0 = 0.2001, for 200 iterations.
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Figure 12.8: The intersection T (x) = x when 0 < µ < 1.
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Figure 12.9: The intersections T (x) = x when 1 < µ ≤ 2. There are two
intersections.

The gradient of the function T (x) is greater than 1 at x1,1, so this point is
unstable; the gradient of T (x) at the point x1,2 is less than −1. Therefore, this point
is also unstable.

In summary, when 0 ≤ µ < 1, there is one stable period-one point at x = 0;
when µ = 1, there are an infinite number of period-one points in the interval
0 ≤ x ≤ 1/2; and when 1 < µ ≤ 2, there are two unstable period-one points at
x1,1 and x1,2. The obvious question then is, where do the paths go if not to these
two points of period one? The answer to this question will be given later.

Definition 2. For system (12.2), a fixed point of period N is a point at which
xn+N = f N(xn) = xn, for all n.

In order to determine the fixed points of period two for the tent map, it is
necessary to find the points of intersection of T 2(x) with the diagonal. Consider
the case where µ = 2; the methods below can be applied for any value of µ in the
interval [0, 2].
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The function of the function T (T (x)) = T 2(x) is determined by replacing x

with T (x) in the mapping

T (x) =
{

2x, 0 ≤ x < 1
2

2(1 − x), 1
2 ≤ x ≤ 1.

Hence,

T 2(x) =
{

2T (x), 0 ≤ T (x) < 1
2

2(1 − T (x)), 1
2 ≤ T (x) ≤ 1.

The interval 0 ≤ T (x) < 1
2 on the vertical axis corresponds to two intervals,

namely 0 ≤ x < T −1
( 1

2

)
and T −1

( 1
2

) ≤ x ≤ 1 on the horizontal axis. When
µ = 2, it is not difficult to show that T −1

( 1
2

) = 1
4 or 3

4 , depending on the branch of
T (x). The process may be repeated for T (x) lying in the interval

[ 1
2 , 1

]
. Therefore,

T 2(x) becomes

T 2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4x, 0 ≤ x < 1
4

2 − 4x, 1
4 ≤ x < 1

2

4x − 2, 1
2 ≤ x < 3

4

4 − 4x, 3
4 ≤ x ≤ 1.

This function intersects the diagonal at four points corresponding to x = 0, 2/5,
2/3, and 4/5 as shown in Figure 12.10.
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x

T
2

Figure 12.10: The graphs of T 2(x) and y = x when µ = 2.

The fixed points at x = 0 and x = 2/3 are of period one; therefore, there are
two points of period two given by x2,1 = 2

5 and x2,2 = 4
5 . Since the gradient of

|T 2(x)| is greater than 1 at these points, x2,1 and x2,2 are unstable.
It is not difficult to show that there are no period-two points for 0 ≤ µ ≤ 1

and there are two points of period two for 1 < µ ≤ 2.
To determine the fixed points of period three, it is necessary to find the points

of intersection of T 3(x) with the diagonal. Consider the case where µ = 2. The
methods below can be applied for any value of µ in the interval [0, 2].
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The function T (T (T (x))) = T 3(x) is determined by replacing x with T (x)

in the mapping for T 2(x). Hence,

T 3(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4T (x), 0 ≤ T (x) < 1
4

2 − 4T (x), 1
4 ≤ T (x) < 1

2

4T (x) − 2, 1
2 ≤ T (x) < 3

4

4 − 4T (x) 3
4 ≤ T (x) ≤ 1.

The interval 0 ≤ T (x) < 1
4 on the vertical axis corresponds to two intervals,

namely 0 ≤ x < T −1
( 1

4

)
and T −1

( 1
4

) ≤ x ≤ 1 on the horizontal axis. When
µ = 2, it is not difficult to show that T −1

( 1
4

) = 1
8 or 7

8 , depending on the branch of
T (x). The process may be repeated for T (x) lying in the other intervals. Therefore,
T 3(x) becomes

T 3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8x, 0 ≤ x < 1
8

2 − 8x, 1
8 ≤ x < 1

4

8x − 2, 1
4 ≤ x < 3

8

4 − 8x, 3
8 ≤ x < 1

2

8x − 4, 1
2 ≤ x < 5

8

6 − 8x, 5
8 ≤ x < 3

4

8x − 6, 3
4 ≤ x < 7

8

8 − 8x, 7
8 ≤ x ≤ 1.

This function intersects the diagonal at eight points corresponding to x =
0, 2

9 , 2
7 , 4

9 , 4
7 , 2

3 , 6
7 , and 8

9 , as shown in Figure 12.11. Note that points of period two
do not repeat on every third cycle and, hence, do not appear here.

The fixed points at x = 0 and x = 2/3 are of period one; therefore, there are
six points of period three given by x3,1 = 2

9 , x3,2 = 4
9 , x3,3 = 8

9 , x3,4 = 2
7 , x3,5 =

4
7 , and x3,6 = 6

7 . Since the gradient of |T 3(x)| is greater than 1 at these points, all
six points are unstable. Thus, an initial point close to the periodic orbit, but not on
it, will move away and the orbits will diverge.

This process may be repeated to determine points of any period for the tent
map. Recall that the results due to Li and Yorke imply that the map contains
periodic points of all periods. It is therefore possible to find points of period 10, 106,
or even 10100, for example. There are also aperiodic (or nonperiodic) orbits and
the system is sensitive to initial conditions. Similar phenomena are observed for
three-dimensional autonomous systems in Chapter 7; in fact, most of the dynamics
exhibited there appear for this much simpler system.
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Figure 12.11: The graphs of T 3(x) and y = x when µ = 2.

12.3 The Logistic Map, Bifurcation Diagram, and
Feigenbaum Number

In the early 1970s, May [12] and others began to investigate the equations used
by fish biologists and entomologists to model the fluctuations in certain species.
Simple population models have been discussed in other chapters using continuous
dynamical models, but the analysis here will be restricted to simple nonlinear
discrete systems. Perhaps the most famous system used to model a single species
is that known as the logistic map given by

(12.3) xn+1 = fµ(xn) = µxn(1 − xn),

where µ is a parameter and 0 ≤ xn ≤ 1 represents the scaled population size.
Consider the case where µ is related to the reproduction rate and xn represents the
population of blowflies at time n, which can be measured in hours, days, weeks,
months, etc. Blowflies have a relatively short life span and are easy to monitor
in the laboratory. Note that this model is extremely simple, but, as with the tent
map, a rich variety of behavior is displayed as the parameter µ is varied. We note
that scientists would find it difficult to change reproduction rates of individual flies
directly; however, for many species the reproduction rate depends on other factors,
such as temperature. Hence, imagine a tank containing a large number of blowflies.
Experimentally, we would like to observe how the population fluctuates, if at all,
at different temperatures. A population of zero would imply that the tank is empty
and a scaled population of one would indicate that the tank is full. The numbers
produced in this model would be rounded down to guarantee that fractions would
be ignored as in the continuous case.

It must be pointed out that this model does not take into account many features
which would influence a population in real applications. For example, age classes,
diseases, other species interactions, and environmental effects are all ignored. Even
though many factors are left out of the equation, the results show a wide range of
dynamical behavior which has been observed both experimentally and in the field.
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Consider the logistic map fµ : [0, 1] → [0, 1] given by

xn+1 = fµ(xn),

where fµ(x) = µx(1 − x). The parameter µ lies in the interval [0, 4]. The graph
of fµ is given in Figure 12.12.
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x

f µ

µ/4

Figure 12.12: A graph of the logistic map function.

As with the tent map, simple numerical and graphical iterations may be carried
out for varying values of the parameter µ. To avoid repetition, these tasks will be
left as exercises at the end of the chapter. Instead, the analysis will be restricted to
finding periodic points and plotting a bifurcation diagram.

To find points of period one, it is necessary to solve the equation given by

fµ(x) = µx(1 − x) = x,

which gives the points which satisfy the condition xn+1 = xn for all n. There are
two solutions given by x1,1 = 0 and x1,2 = 1 − 1

µ
. The stability of the critical

points may be determined using the following theorem.

Theorem 1. Suppose that the map fµ(x) has a fixed point at x∗. Then the fixed
point is stable if ∣∣∣∣ d

dx
fµ(x∗)

∣∣∣∣ < 1

and it is unstable if ∣∣∣∣ d

dx
fµ(x∗)

∣∣∣∣ > 1.

Using Theorem 1,
∣∣∣ dfµ(0)

dx

∣∣∣ = µ. Thus, the point x1,1 is stable for 0 < µ < 1

and unstable if µ > 1. Since
∣∣∣ dfµ(x1,2)

dx

∣∣∣ = 2 − µ, this fixed point is stable for

1 < µ < 3 and is unstable when µ < 1 or µ > 3.
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To find points of period two, it is necessary to solve the equation given by

(12.4) f 2
µ(x) = µ(µx(1 − x)(1 − µx(1 − x))) = x,

which gives the points which satisfy the condition xn+2 = xn for all n. Two
solutions for (12.4) are known, namely x1,1 and x1,2, since points of period one
repeat on every second iterate. Therefore, (12.4) factorizes as follows:

x

(
x −

(
1 − 1

µ

))
(−µ3x2 + (µ2 + µ3)x − (µ2 + µ)) = 0.

The equation −µ3x2 + (µ2 + µ3)x − (µ2 + µ) = 0 has roots at

x2,1 = µ + 1 + √
(µ − 3)(µ + 1)

2µ
and x2,2 = µ + 1 − √

(µ − 3)(µ + 1)

2µ
.

Thus, there are two points of period two when µ > 3. Let b1 = 3 correspond to
the first bifurcation point for the logistic map. Now

d

dx
f 2

µ(x2,1) = −4µ3x3 + 6µ3x2 − 2(µ2 + µ3)x + µ2

and ∣∣∣∣ d

dx
f 2

µ(x2,1)

∣∣∣∣ = 1,

when µ = b2 = 1 +√
6. The value b2 corresponds to the second bifurcation point

for the logistic map. Hence, x2,1 and x2,2 lose their stability at µ = b2 (check this
using Maple).

In summary, for 0 < µ < 1, the fixed point at x = 0 is stable and iterative
paths will be attracted to that point. Physically, this would mean that the population
of blowflies would die away to zero. One can think of the temperature of the tank
being too low to sustain life. As µ passes through 1, the trivial fixed point becomes
unstable and the iterative paths are attracted to the fixed point at x1,2 = 1 − 1

µ
. For

1 < µ < b1, the fixed point of period one is stable which means that the population
stabilizes to a constant value after a sufficiently long time. As µ passes through b1,
the fixed point of period one becomes unstable and a fixed point of period two is
created. For b1 < µ < b2, the population of blowflies will alternate between two
values on each iterative step after a sufficient amount of time. As µ passes through
b2, the fixed point of period two loses its stability and a fixed point of period four
is created.

As with other dynamical systems, all of the information gained so far can be
summarized on a bifurcation diagram. Figure 12.13 shows a bifurcation diagram
for the logistic map when 0 ≤ µ ≤ 3.5. The first two bifurcation points are labeled
b1 and b2.
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Figure 12.13: The first two bifurcations for the logistic map.

For other values of µ, it is interesting to plot time series data obtained from
the logistic map. Figure 12.14 shows iterative paths and time series data when
x0 = 0.2 (assuming the tank is initially, say, 1

5 full) for the following four cases:
(i) µ = 2, (ii) µ = 3.2, (iii) µ = 3.5, and (iv) µ = 4.

It is not too difficult to extend the diagram to cover the whole range of
values for µ, namely 0 ≤ µ ≤ 4. The bifurcation diagram given in Figure 12.15
was produced using the Maple package. Thus, even the simple quadratic function
fµ(x) = µx(1 − x) exhibits an extraordinary variety of behaviors as µ varies
from 1 to 4. In the past, scientists believed that in order to model complicated
behavior, one must have complicated or many equations. One of the most exciting
developments to emerge from the realm of nonlinear dynamical systems was the
realization that simple equations can lead to extremely complex seemingly random
behavior.

Figure 12.15 shows period-doubling bifurcations to chaos. This means that
as µ increases beyond b1, points of period one become period two; at b2, points of
period two become period four; and so on. The sequence of period-doublings ends
at about µ = 3.569945 . . . , where the system becomes chaotic. This is not the end
of the story, however; Figure 12.16 clearly shows regions where the system returns
to periodic behavior, even if for only a small range of µ values. These regions are
called periodic windows.

Near the period-three window, the logistic map can display a new type of
behavior known as intermittency, which is almost periodic behavior interrupted
by occasional chaotic bursts. A graphical iteration and time series plot are shown
in Figure 12.17. The intermittent nature becomes more evident as more points are
plotted.

The geometry underlying this behavior can be seen by plotting a graphical
iteration for f 3

µ when µ = 3.8282, for example. This is left as an exercise for the
reader. As the parameter µ is increased, the length of the intervals of chaotic bursts
become larger and larger until the system becomes fully chaotic. This phenomenon
is known as an intermittency route to chaos and appears in many other physical
examples.
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Figure 12.14: Iterative paths and time series data representing the population of
blowflies at time n. The population can vary periodically or in an erratic unpre-
dictable manner.
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Figure 12.15: [Maple] The bifurcation diagram of the logistic map produced using
the first iterative method (see Chapter 14).

Figure 12.16: A magnification of the bifurcation diagram for the logistic map in
the range 3.5 ≤ µ ≤ 4.

An even more remarkable discovery was made by Mitchell J. Feigenbaum in
the mid-1970s and involves the concept of universality. The first seven bifurcation
points computed numerically are given by b1 = 3.0, b2 = 3.449490 . . . , b3 =
3.544090 . . . , b4 = 3.564407 . . . , b5 = 3.568759 . . . , b6 = 3.569692 . . . , and
b7 = 3.569891 . . . . Feigenbaum discovered that if dk is defined by dk = bk+1−bk ,
then

δ = lim
k→∞

dk

dk+1
= 4.669202 . . . .

The number δ, known as the Feigenbaum constant, is much like the numbers π

and e, in that it appears throughout the realms of science. The constant δ can be
found not only in iterative maps but also in certain differential equations and even
in physical experiments exhibiting period-doubling cascades to chaos. Hence, the
Feigenbaum constant is called a universal constant.
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Figure 12.17: (a) Iterative paths when µ = 3.8282 and x0 = 0.2. (b) Time series
data.

Figure 12.15 also has fractal structure, one may see similar patterns as you
zoom in to the picture. Fractals will be discussed in detail in Chapter 15.

Another method often used to determine whether a system is chaotic is to
use the Lyapunov exponent. One of the properties of chaos is the sensitivity to
initial conditions. However, it is known that an orbit on a chaotic attractor for a
bounded system also returns to all accessible states with equal probability. This
property is known as ergodicity. Thus, iterates return infinitely closely, infinitely
often to any previous point on the chaotic attractor. The formula below may be
applied to compute the Lyapunov exponent for iterates in the logistic map. It gives
an indication as to whether two orbits starting close together diverge or converge.

Definition 3. The Lyapunov exponent L computed using the derivative method is
defined by

L = 1

n

(
ln |f ′

µ(x1)| + ln |f ′
µ(x2)| + · · · + ln |f ′

µ(xn)|
)
,

where f ′
µ represents differentiation with respect to x and x0, x1, x2, . . . , xn are

successive iterates. The Lyapunov exponent may be computed for a sample of
points near the attractor to obtain an average Lyapunov exponent.

Theorem 2. If at least one of the average Lyapunov exponents is positive, then the
system is chaotic; if the average Lyapunov exponent is negative, then the orbit is
periodic and when the average Lyapunov exponent is zero, a bifurcation occurs.

Table 12.2 lists Lyapunov exponents computed for the logistic map (12.3)
for several values of the parameter µ. Note that there are other methods available
for determining Lyapunov exponents (see Chapter 7).

The numerical results agree quite well with Theorem 2. In fact, the more
chaotic a system, the higher the value of the Lyapunov exponent, as can be seen in
Table 12.2. The Maple program is given in Section 12.6. In order to find a better
approximation of the Lyapunov exponent, a much larger number of iterates would
be required.



12.4. Gaussian and Hénon Maps 283

Table 12.2: The Lyapunov exponents computed to four decimal places using the
first derivative method for the logistic map. A total of 50,000 iterates was used in
each case.

µ 0.5 1 2.1 3 3.5 3.8282 4
Average L −0.6932 −0.0003 −2.3025 −0.0002 −0.8720 0.2632 0.6932

Let us return briefly to the tent map (12.1). The Lyapunov exponent of the
tent map can be found exactly since T ′(x) = ±µ for all values of x. Hence,

L = lim
n→∞

(
1

n

n∑
i=1

ln |T ′(xi)|
)

= ln µ.

Problem. Show that for the logistic map with µ = 4, the Lyapunov exponent is
in fact L = ln(2).

12.4 Gaussian and Hénon Maps
The Gaussian Map. Another type of nonlinear one-dimensional iterative map is
the Gaussian map G : � → � defined by

G(x) = e−αx2 + β,

where α and β are constants. The graph of the Gaussian function has a general
form as depicted in Figure 12.18. The parameters α and β are related to the width
and height of the Gaussian curve, respectively.

Figure 12.18: The Gaussian map function.

Define an iterative map by

xn+1 = G(xn).

Since there are two parameters associated with this map, one would expect the
dynamics to be more complicated than for the logistic map.All of the features which
appear in the logistic map are also present for the Gaussian map. However, certain
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features of the latter map are not exhibited at all by the logistic map. Some of these
additional phenomena may be described as period bubblings, period undoublings,
and bistability. These features can appear in the bifurcation diagrams.

Simple numerical and graphical iterations may be carried out as for the tent
and logistic maps (see the exercises at the end of the chapter). The fixed points of
period one may be found by solving the iterative equation xn+1 = xn for all n,
which is equivalent to finding the intersection points of the function G(x) with the
diagonal. It is not difficult to see that there can be one, two, or three intersections,
as shown in Figure 12.19. For certain parameter values it is possible to have two
stable fixed points of period one.

(a) (b)

(c)

Figure 12.19: Possible intersections of the Gaussian function with the diagonal.

The Gaussian map has two points of inflection at x = ± 1√
2α

. This implies
that period-one behavior can exist for two ranges of the parameters. This in turn
means that a period-one point can make a transition from being stable to unstable
and back to stable again, as depicted in Figure 12.20.

As the parameter β is increased from β = −1, a fixed point of period one
becomes unstable and a sequence of period bubbling occurs through period-two,
period-four and back to period-two behavior. As the parameter is increased still
further, the unstable fixed point of period one becomes stable again and a single
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Figure 12.20: A bifurcation diagram for the Gaussian map when α = 4 produced
using the first iterative method.
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Figure 12.21: Bifurcation diagrams for the Gaussian map when α = 8, produced
using the first iterative method. (a) x0 = 0 and (b) x0 = −1 for each value of β.

branch appears once more. For higher values of the parameter α, the system can
display more complex dynamics. An example is shown in Figure 12.21.

Figure 12.21 displays period-doubling and period-undoubling bifurcations
and multistability. For example, when β = −1, there are two possible steady-
state solutions. It is possible for these systems to display bistable phenomena as
explained in other chapters of the book. The tent and logistic maps cannot display
bistability.

The Hénon Map. Consider the two-dimensional iterated map function given by

xn+1 = 1 + yn − αx2
n

yn+1 = βxn,(12.5)

where α > 0 and |β| < 1. The map was first discussed by Hénon [13] in 1976,
who used it as a simple model for the Poincaré map of the Lorenz system. The
Hénon map displays periodicity, mixing, and sensitivity to initial conditions. The
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system can also display hysteresis, and bistability can be observed in the bifurcation
diagrams. Each of these phenomena will now be discussed briefly in turn.

Suppose that the discrete nonlinear system

xn+1 = P(xn, yn), yn+1 = Q(xn, yn),

has a fixed point at (x1, y1), where P and Q are at least quadratic in xn and yn.
The fixed point can be transformed to the origin and the nonlinear terms can be
discarded after taking a Taylor series expansion. The Jacobian matrix is given by

J (x1, y1) =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠
∣∣∣∣∣∣
(x1,y1)

Definition 4. Suppose that the Jacobian has eigenvalues λ1 and λ2. A fixed point
is called hyperbolic if both |λ1| 
= 1 and |λ2| 
= 1. If either |λ1| = 1 or |λ2| = 1,
then the fixed point is called nonhyperbolic.

The type of fixed point is determined using arguments similar to those used
in Chapter 2. In the discrete case, the fixed point is stable as long as |λ1| < 1
and |λ2| < 1, otherwise the fixed point is unstable. For example, the fixed points
of period one for the Hénon map can be found by solving the equations given by
xn+1 = xn and yn+1 = yn simultaneously. Therefore, period-one points satisfy
the equations

x = 1 − αx2 + y, y = βx.

The solutions are given by

x = (β − 1) ± √
(1 − β)2 + 4α

2α
, y = β

(
(β − 1) ± √

(1 − β)2 + 4α

2α

)
.

Thus, the Hénon map has two fixed points of period one if and only if (1−β)2+4α >

0. As a particular example, consider system (12.5) with α = 3
16 and β = 1

2 . There
are two fixed points of period one given by A = (−4, −2) and B = ( 4

3 , 2
3

)
. The

Jacobian is given by

J =
( −2αx 1

β 0

)
.

The eigenvalues for the fixed point A are λ1 ≈ −0.28 and λ2 ≈ 1.78; therefore, A
is a saddle point. The eigenvalues for the fixed point B are λ1 = −1 and λ2 = 0.5.
Thus this critical point is nonhyperbolic.

Fix the parameter β = 0.4 in the Hénon map (12.5). There are points of
periods one (when α = 0.2), two (when α = 0.5), and four (when α = 0.9), for
example. The reader can verify these results using the Maple program in Section
12.6. Some iterative plots are given in Figure 12.22.
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Figure 12.22: [Maple] Iterative plots for system (12.5) when β = 0.4 and (a)
α = 1 and (b) α = 1.2. In each case the initial point was (0.1, 0).

The choice of initial conditions is important in these cases, as some orbits
are unbounded and move off to infinity. One must start with points that are within
the basin of attraction for this map. Basins of attraction are discussed in other
chapters of this book. Of course, all of this information can be summarized on a
bifurcation diagram, and this will be left as an exercise for the reader. There are the
usual phenomena associated with bifurcation diagrams. However, for the Hénon
map, different chaotic attractors can exist simultaneously for a range of parameter
values of α. This system also displays hysteresis for certain parameter values.

To demonstrate the stretching and folding associated with this map, consider
a set of initial points lying on the square of length 2 centered at the origin. Fig-
ure 12.23 shows how the square is stretched and folded after only two iterations.
This stretching and folding is reminiscent of the Smale horseshoe discussed in
Chapter 8.

The chaotic attractor formed is an invariant set and has fractal structure. Note
that det(J ) for the Hénon map is equal to |β|. This implies that a small area is
reduced by a factor of β on each iteration since |β| < 1.

12.5 Applications
This section introduces four discrete dynamical systems taken from biology, eco-
nomics, nonlinear optics, and neural networks. The reader can investigate these
systems via the exercises in Section 12.7.

Biology. The average human 70-liter (L) body contains 5L of blood, a small
amount of which consists of erythrocytes or red blood cells. These cells, which
are structurally the simplest in the body, can be counted to measure hematologic
conditions such as anemia. Anemia is any condition resulting in a significant de-
crease in total body erythrocyte mass. The population of red blood cells oscillates
in a healthy human with the average woman having 4.2–5.4/µL, and the average
man having 4.7–6.1/µL. A simple blood cell population model was investigated
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Figure 12.23: Application of the Hénon transformation to a square when α = 1.2
and β = 0.4: (a) initial points, (b) first iterates, and (c) second iterates.

by Lasota [10] in 1977. Let cn denote the red cell count per unit volume in the nth

time interval; then

cn+1 = cn − dn + pn,

wheredn andpn are the number of cells destroyed and produced in one time interval,
respectively. In the model considered by Lasota, dn = acn and pn = bcr

ne
−scn ,

where 0 < a ≤ 1 and b, r, s > 0. Hence,

(12.6) cn+1 = (1 − a)cn + bcr
ne

−scn .

Typical parameters used in the model are b = 1.1 × 106, r = 8, and s = 16.
Clinical examples are cited in the author’s paper [2], where a model is investigated
in which production and destruction rates vary.

Economics. The Gross National Product (GNP) measures economic activity based
on labor and production output within a country. Consider the following simple
growth model investigated by Day [9] in 1982:

kt+1 = s(kt )f (kt )

1 + λ
,
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where kt is the capital-labor ratio, s is the savings ratio function, f is the per capita
production function, and λ is the natural rate of population growth. In one case
considered by Day,

s(k) = σ, f (k) = Bkβ(m − k)γ

(1 + λ)
,

where β, γ, m > 0. This leads to the following discrete dynamical system:

(12.7) kt+1 = σ
Bk

β
t (m − kt )

γ

(1 + λ)
,

which can be thought of as a highly simplified model for the GNP of a country.

Nonlinear Optics. When modeling the intracavity field of a laser in a bulk cavity
ring under the assumption that saturable absorption can be ignored, Hammel et
al. [8] obtained the following complex one-dimensional difference equation relat-
ing the field amplitude, say, En+1, at the (n + 1)st cavity pass to that of a round
trip earlier:

(12.8) En+1 = A + BEn exp

[
i

(
φ − C

1 + |En|2
)]

,

where φ is a phase angle and A, B, and C are all constant. This mapping can also
be thought of as two dimensional (one-dimensional complex). Splitting En into its
real and imaginary parts, (12.8) becomes

xn+1 = A + B [xn cos(θ) − yn sin(θ)] ,

yn+1 = B [xn sin(θ) + yn cos(θ)] ,
(12.9)

where θ =
(
φ − C

1+|En|2
)

. Equations (12.8) and (12.9) are known as Ikeda map-

pings. Electromagnetic waves and optical resonators are dealt with in some detail
in Chapter 14.

Neural Networks. According to Pasemann and Stollenwerk [4], the activity of a
recurrent two-neuron module shown in Figure 12.24 at time n is given by the vector
xn = (xn, yn)

T . The discrete dynamical system used to model the neuromodule is
given by

xn+1 = θ1 + w11σ(xn) + w12σ(yn),

yn+1 = θ2 + w21σ(xn),
(12.10)

where σ defines the sigmoidal transfer function defining the output of a neuron

σ(x) = 1

1 + e−x
,
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11
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Figure 12.24: A recurrent two-neuron module with an excitory neuron with activity
yn and a self-connected inhibitory neuron with activity xn.

θ1 and θ2 are the neuron biases, the wij are weights, the index i indicates the neuron
destination for that weight, and the index j represents the source of the signal fed
to the neuron. The author and Bandar [1] considered a simple neuromodule subject
to feedback. Neural networks are dealt with in some detail in Chapter 17.

12.6 Maple Commands
Type pointplot in the Maple Help Browser, for explanations of what this command
does in the following programs.

> # Program 12a: Graphical iteration.

> # Figure 12.7(b): The tent map.

> imax:=200:mu:=2:# Initialize

halfmax:=imax/2:

T:=array(0..10000):TT:=array(0..10000):

T[0]:=0.2001:

for i from 0 to imax do # Define the tent map

if T[i]>=0 and T[i]<=0.5 then

T[i+1]:=mu*T[i]:

elif

T[i]>0 and T[i]<=1 then

T[i+1]:=mu*(1-T[i]):end if:end do:

TT[0]:=[T[0],0]:TT[1]:=[T[0],T[1]]:

for i from 1 to halfmax do # Find the co-ordinates

TT[2*i]:=[T[i],T[i]]:

TT[2*i+1]:=[T[i],T[i+1]]:end do:

l:=[TT[n]$n=0..imax]: # List the co-ordinates

with(plots):

M:=plot(l,x=0..1,y=0..1,style=line,color=red):

N:=plot(x,x=0..1,color=black):

P:=plot(mu*x,x=0..0.5,color=black):

Q:=plot(mu*(1-x),x=0.5..1,color=black):

display({M,N,P,Q},labels=[‘x‘,‘T‘]);
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> # Program 12b: Plotting functions of functions.

> # Determining points of period 4.

> with(plots):

mu:=3.5:

f:=x->mu*x*(1-x):

f4:=f(f(f(f(x)))):

plot({f4,x},x=0..1,scaling=CONSTRAINED,labels=[‘x‘,‘fˆ4‘],

tickmarks=[2,2]);

> # Program 12c: Computing the Lyapunov exponent.

> x=array(0..50000):x[0]:=0.1:mu:=4:imax:=50000:

for i from 0 to imax do

x[i+1]:=evalf(mu*x[i]*(1-x[i])):end do:

L:=0:

for i from 1 to imax do

L:=L+ln(abs(mu*(1-2*x[i]))):end do:

L/imax;

0.6931207402

> # Program 12d: Bifurcation diagram of the logistic map.

> # Figure 12.15.

> with(plots):mu:=’mu’:

imax:=80:jmax:=400:step:=0.01:

ll:=array(0..10000):xx:=array(0..10000,0..10000):

for j from 0 to jmax do

xx[j,0]:=0.5:

for i from 0 to imax do

xx[j,i+1]:=(step*j)*xx[j,i]*(1-xx[j,i]):end do:

ll[j]:=[[(step*j),xx[j,n]]$n=40..imax]:end do:

LL:=[seq(ll[j],j=0..jmax)]:

plot(LL,x=0..4,y=-0.1..1,style=point,symbol=solidcircle,symbolsize=4,

tickmarks=[2,2],labels=[‘mu‘,‘x‘],font=[TIMES,ROMAN,15],color=blue);

> # Program 12e: The Henon map.

> # Figure 12.22(b): Chaotic attractor.

> x:=array(0..10000):y:=array(0..10000):

a:=1.2:b:=0.4:imax:=5000:

x[0]:=0.1:y[0]:=0:

for i from 0 to imax do

x[i+1]:=1+y[i]-a*(x[i])ˆ2:

y[i+1]:=b*x[i]:end do:

with(plots):

points:=[[x[n],y[n]]$n=300..imax]:

pointplot(points,style=point,symbol=solidcircle,symbolsize=4,

color=blue,axes=BOXED);
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> # Program 12f: Computing the Lyapunov exponents of the Henon map.

> restart:Digits:=30:

itermax:=500:

a:=1.2:b:=0.4:x:=0:y:=0:

vec1:=<1,0>:vec2:=<0,1>:

for i from 1 to itermax do

x1:=1-a*xˆ2+y:y1:=b*x: # The Henon map.

x:=x1:y:=y1:

J:=Matrix([[-2*a*x,1],[b,0]]): # The Jacobian.

vec1:=J.vec1:

vec2:=J.vec2:

dotprod1:=vec1.vec1:

dotprod2:=vec1.vec2:

vec2:=vec2-(dotprod2/dotprod1)*vec1: # Orthogonal vector.

lengthv1:=sqrt(dotprod1):

area:=abs(vec1[1]*vec2[2]-vec1[2]*vec2[1]):

h1:=evalf(log(lengthv1)/i):

h2:=evalf(log(area)/i-h1):

end do:

print(’h1’=h1,’h2’=h2):

h1 = 0.348261386891632927139917292646,

h2 = −1.26455211876578799232344450441.

12.7 Exercises
1. Consider the tent map defined by

T (x) =
{

2x, 0 ≤ x < 1
2

2(1 − x), 1
2 ≤ x ≤ 1.

Sketch graphical iterations for the initial conditions (i) x0 = 1
4 , (ii) x0 = 1

6 ,
(iii) x0 = 5

7 , and (iv) x0 = 1
19 . Find the points of periods one, two, three,

and four. Give a formula for the number of points of period N .

2. (a) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =
{ 3

2x, 0 ≤ x < 1
2

3
2 (1 − x), 1

2 ≤ x ≤ 1.

Sketch the graphs of T (x), T 2(x), and T 3(x). How many points are
there of periods one, two, and three, respectively?
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(b) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =
{ 9

5x, 0 ≤ x < 1
2

9
5 (1 − x), 1

2 ≤ x ≤ 1.

Determine the fixed points of periods one, two, and three.

3. By editing the Maple program given in Section 12.6, plot a bifurcation dia-
gram for the tent map.

4. Consider the logistic map function defined by fµ(x) = µx(1−x). Determine
the functions fµ(x), f 2

µ(x), f 3
µ(x), and f 4

µ(x), and plot the graphs when
µ = 4.0. How many points are there of periods one, two, three, and four?

5. Consider the iterative equation

xn+1 = µxn(100 − xn),

which may be used to model the population of a certain species of insect.
Given that the population size periodically alternates between two distinct
values, determine a value of µ that would be consistent with this behavior.
Determine an equation that gives the points of period two for a general µ

value.

6. Plot bifurcation diagrams for

(a) the Gaussian map when α = 20 for −1 ≤ β ≤ 1;

(b) the Gaussian map when β = −0.5 for 0 ≤ α ≤ 20.

7. Find the fixed points of periods one and two for the Hénon map given by

xn+1 = 3

50
+ 9

10
yn − x2

n, yn+1 = xn.

Derive the inverse map.

8. (a) Show that the Hénon map given by

xn+1 = 1 − αx2
n + yn, yn+1 = βxn,

where α > 0 and |β| < 1 undergoes a bifurcation from period-one to

period-two behavior exactly when α = 3(β−1)2

4 for fixed β.

(b) Investigate the bifurcation diagrams for the Hénon map by plotting the
xn values as a function of α for β = 0.4.

(c) Write a Maple program to compute the Lyapunov exponents of the
Hénon map

xn+1 = 1 − 1.2x2
n + yn, yn+1 = 0.4xn.
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9. (a) Consider the blood-cell iterative equation (12.6). Assuming that b =
1.1×106, r = 8, and s = 16, show that there are (i) two stable and one
unstable fixed points of period one when a = 0.2 and (ii) two unstable
and one stable fixed point of period one when a = 0.3.

(b) Assume that σ = 0.5, β = 0.3, γ = 0.2, λ = 0.2, and m = 1 in
the economic model (12.7). Show that there is a stable fixed point of
period one at x1,2 = 0.263 when B = 1 and an unstable fixed point of
period one at x1,2 = 0.873 when B = 3.3.

(c) Show that the inverse map of (12.8) is given by

En+1 = (En − A)

B
exp

[
−i

(
φ − CB2

(B2 + |En − A|2)
)]

.

(d) Consider the neuromodule model (12.10). Assume that θ1 = −2, θ2 =
3, w11 = −20, w12 = 6, and w21 = −6. Show that there is one fixed
point of period one approximately at (−1.280, 1.695) and that it is a
saddle point.

10. According to Ahmed et al. [3], an inflation-unemployment model is given
by

Un+1 = Un−b(m−In), In+1 = In−(1−c)f (Un)+f (Un−b(m−In)),

where f (U) = β1 + β2e
−U , Un and In are measures of unemployment and

inflation at time n, respectively, and b, c, β1, and β2 are constants. Show that
the system has a unique fixed point of period one at(

ln

(−β2

β1

)
, m

)
.

Given that m = 2, β1 = −2.5, β2 = 20, and c = 0.18, show that the
eigenvalues of the Jacobian matrix are given by

λ1,2 = 1 − 5b

4
±

√
25b2 − 40bc

4
.
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13
Complex Iterative Maps

Aims and Objectives
• To introduce simple complex iterative maps.

• To introduce Julia sets and the Mandelbrot set.

• To carry out some analysis on these sets.

On completion of this chapter, the reader should be able to

• carry out simple complex iterations;

• plot Julia sets and the Mandelbrot set using simple Maple programs;

• determine boundaries of points with low periods;

• find basins of attraction (or domains of stability).

It is assumed that the reader is familiar with complex numbers and theArgand
diagram. Julia sets are defined, and the Maple package is used to plot approxima-
tions of these sets.

There are an infinite number of Julia sets associated with one mapping. In
one particular case, these sets are categorized by plotting a so-called Mandelbrot
set. A Maple program for plotting a color version of the Mandelbrot set is listed.

Applications of complex iterative maps to the real world are presented in
Chapter 14.
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13.1 Julia Sets and the Mandelbrot Set
As a simple introduction to one-dimensional nonlinear complex iterative maps,
consider the quadratic map

(13.1) zn+1 = fc(zn) = z2
n + c,

where zn and c are complex numbers.Although (13.1) is as simple as the equation of
a real circle, the dynamics displayed are highly complicated. In 1919, Gaston Julia
published a prize-winning lengthy article on certain types of conformal complex
mappings, the images of which would not appear until the advent of computer
graphics many years later. Recall that a conformal mapping preserves both the size
and the sign of angles.

Definition 1. Consider a complex polynomial mapping of the form zn+1 = f (zn).
The points that lie on the boundary between points that orbit under f and are
bounded and those that orbit under f and are unbounded are collectively referred
to as the Julia set.

The following properties of a Julia set, say, J , are well known:

• The set J is a repellor.

• The set J is invariant.

• An orbit on J is either periodic or chaotic.

• All unstable periodic points are on J .

• The set J is either wholly connected or wholly disconnected.

• The set J nearly always has fractal structure (see Chapter 15).

The colorful Julia sets displayed in many textbooks and videos such as [1]—
[8] are generated on powerful graphic computers. Unfortunately, the reader has
to be satisfied with less detailed black-and-white figures in this text. To see the
true beauty and some detail of the Julia sets and the Mandelbrot set, the author
would encourage the reader to watch the video [8] or view some of the numerous
videos on YouTube. There are even video zoom-ins accompanied by classical or
rock music.

To generate Julia sets, some of the properties listed above are utilized. For
example, if the set J is a repellor under the forward iterative map (13.1), then
the Julia set will become an attractor under an inverse mapping. For computational
reasons, it is best to work with the real and imaginary parts of the complex numbers
separately. For (13.1) it is not difficult to determine the inverse map. Now

zn+1 = z2
n + c,
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and, thus,

xn+1 = x2
n − y2

n + a and yn+1 = 2xnyn + b,

where zn = xn + iyn and c = a + ib. To find the inverse map, one must find
expressions for xn and yn in terms of xn+1 and yn+1. Now

x2
n − y2

n = xn+1 − a,

and note that

(x2
n + y2

n)2 = (x2
n − y2

n)2 + 4x2
ny2

n = (xn+1 − a)2 + (yn+1 − b)2.

Hence,

x2
n + y2

n = +
√

(xn+1 − a)2 + (yn+1 − b)2,

since x2
n + y2

n > 0. Suppose that

u =
√

(xn+1 − a)2 + (yn+1 − b)2 and v = xn+1 − a.

Then

(13.2) xn = ±√
u + v and yn = yn+1 − b

2xn

.

In terms of the computation, there will be a problem if xn = 0. To overcome
this difficulty, the following simple algorithm is applied. Suppose that the two roots
of (13.2) are given by x1 + iy1 and x2 + iy2. If x1 = √

u + v, then y1 = √
u − v if

y > b, or y1 = −√
u − v if y < b. The other root is then given by x2 = −√

u + v

and y2 = −y1.
This transformation has a two-valued inverse, and twice as many predecessors

are generated on each iteration. One of these points is chosen randomly in the
computer program. Recall that all unstable periodic points are on J . It is not
difficult to determine the fixed points of period one for mapping (13.1). Suppose
that z is a fixed point of period one. Then zn+1 = zn = z and

z2 − z + c = 0,

which gives two solutions: either

z1,1 = 1 + √
1 − 4c

2
or z1,2 = 1 − √

1 − 4c

2
.

The stability of these fixed points can be determined in the usual way. Hence, the
fixed point is stable if ∣∣∣∣dfc

dz

∣∣∣∣ < 1
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and it is unstable if ∣∣∣∣dfc

dz

∣∣∣∣ > 1.

By selecting an unstable fixed point of period one as an initial point, it is possible
to generate a Julia set using a so-called backward training iterative process.

Julia sets define the border between bounded and unbounded orbits. Suppose
that the Julia set associated with the point c = a + ib is denoted by J (a, b). As a
simple example, consider the mapping

(13.3) zn+1 = z2
n.

One of two fixed points of (13.3) lies at the origin, say, z∗. There is also a fixed point
at z = 1. Initial points that start wholly inside the circle of radius 1 are attracted
to z∗. An initial point starting on |z| = 1 will generate points that again lie on the
unit circle |z| = 1. Initial points starting outside the unit circle will be repelled to
infinity, since |z| > 1. Therefore, the circle |z| = 1 defines the Julia set J (0, 0)

that is a repellor (points starting near but not on the circle are repelled), invariant
(orbits that start on the circle are mapped to other points on the unit circle), and
wholly connected. The interior of the unit circle defines the basin of attraction (or
domain of stability) for the fixed point at z∗. In other words, any point starting
inside the unit circle is attracted to z∗.

Suppose that c = −0.5 + 0.3i in (13.1). Figure 13.1(a) shows a picture of
the Julia set J (−0.5, 0.3) containing 215 points. The Julia set J (−0.5, 0.3) defines
the border between bounded and unbounded orbits. For example, an orbit starting
inside the set J (−0.5, 0.3) at z0 = 0 + 0i remains bounded, whereas an orbit
starting outside the set J (−0.5, 0.3) at z = −1 − i, for instance, is unbounded.
The reader will be asked to demonstrate this in the exercises at the end of the
chapter.

Four of an infinite number of Julia sets are plotted in Figure 13.1. The first
three are totally connected, but J (0, 1.1) is totally disconnected. A program for
plotting Julia sets is listed in Section 13.3. Note that there may be regions where
the Julia set is sparsely populated (see Figure 13.1(c)).You can, of course, increase
the number of iterations to try to close these gaps, but other improved methods are
available. The reader should check the pages (related to the Julia set) at the Maple
Application Center for more information.

In 1979, Mandelbrot devised a way of distinguishing those Julia sets that are
wholly connected from those that are wholly disconnected. He used the fact that
J (a, b) is connected if and only if the orbit generated by z → z2 + c is bounded.
In this way, it is not difficult to generate the now famous Mandelbrot set.

Assign a point on a computer screen to a coordinate position c = (a, b) in
the Argand plane. The point z = 0 + 0i is then iterated under the mapping (13.1)
to give an orbit

0 + 0i, c, c2 + c, (c2 + c)2 + c, · · · .
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Figure 13.1: [Maple] Four Julia sets for the mapping (13.1), where J (a, b) denotes
the Julia set associated with the point c = a + ib: (a) J (−0.5, 0.3), (b) J (0, 1),
(c) J (−1, 0), and (d) J (0, 1.1).

If after 50 iterations the orbit remains bounded (within a circle of radius 4 in the
program used here), then the point is colored black. If the orbit leaves the circle
of radius 4 after m iterations, where 1 < m < 50, then the point is colored black
if m is even and white if m is odd. In this way a black-and-white picture of the
Mandelbrot set is obtained as in Figure 13.2. The Maple program listed in Section
13.3 produces a color picture using the colorstyle command.

Unfortunately, Figure 13.2 does no justice to the beauty and intricacy of the
Mandelbrot set. This figure is a theoretical object that can be generated to an infinite
amount of detail, and the set is a kind of fractal displaying self-similarity in certain
parts and scaling behavior. One has to try to imagine a whole new universe that
can be seen by zooming into the picture. For a video journey into the Mandelbrot
set, the reader is once more directed to the video [8] and YouTube.

It has been found that this remarkable figure is a universal “constant” much
like the Feigenbaum number introduced in Chapter 12. Some simple properties of
the Mandelbrot set will be investigated in the next section.
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Figure 13.2: [Maple] The Mandelbrot set (central black figure) produced using a
personal computer.

13.2 Boundaries of Periodic Orbits
For the Mandelbrot set, the fixed points of period one may be found by solving the
equation zn+1 = zn for all n, or, equivalently,

fc(z) = z2 + c = z,

which is a quadratic equation of the form

(13.4) z2 − z + c = 0.

The solutions occur at

z1,1 = 1 + √
1 − 4c

2
and z1,2 = 1 − √

1 − 4c

2
,

where z1,1 is the first fixed point of period one and z1,2 is the second fixed point
of period one using the notation introduced in Chapter 12. As with other discrete
systems, the stability of each period-one point is determined from the derivative of
the map at the point. Now

(13.5)
dfc

dz
= 2z = reiθ ,

where r ≥ 0 and 0 ≤ θ < 2π . Substituting from (13.5), (13.4) then becomes(
reiθ

2

)2

− reiθ

2
+ c = 0.

The solution for c is

(13.6) c = reiθ

2
− r2ei2θ

4
.
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One of the fixed points, say, z1,1, is stable as long as∣∣∣∣dfc

dz
(z1,1)

∣∣∣∣ < 1.

Therefore, using (13.5), the boundary of the points of period one is given by∣∣∣∣dfc

dz
(z1,1)

∣∣∣∣ = |2z1,1| = r = 1

in this particular case. Let c = x + iy. Then, from (13.6), the boundary is given by
the following parametric equations:

x = 1

2
cos θ − 1

4
cos(2θ), y = 1

2
sin θ − 1

4
sin(2θ).

The parametric curve is plotted in Figure 13.3 and forms a cardioid that lies at the
heart of the Mandelbrot set.

−1 −0.5 0 0.5

−0.5

0

0.5

Re z

Im
 z Period one

Figure 13.3: The boundary of fixed points of period one for the Mandelbrot set.

Using similar arguments to those above, it is not difficult to extend the analysis
to determine the boundary for the fixed points of period two. Fixed points of period
two satisfy the equation zn+2 = zn for all n. Therefore,

f 2
c (z) = (z2 + c)2 + c = z,

or, equivalently,

(13.7) z4 + 2cz2 − z + c2 + c = 0.

However, since points of period one repeat on every second iterate, the points z1,1
and z1,2 satisfy (13.7). Therefore, (13.7) factorizes into

(z2 − z + c)(z2 + z + c + 1) = 0.
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Hence, the fixed points of period two satisfy the quadratic equation

(13.8) z2 + z + c + 1 = 0,

which has roots at

z2,1 = −1 + √−3 − 4c

2
and z2,2 = −1 − √−3 − 4c

2
.

Once more, the stability of each critical point is determined from the derivative of
the map at the point; now

df 2
c

dz
= 4z3 + 4cz = 4z(z2 + c).

Thus, ∣∣∣∣df 2
c

dz
(z2,1)

∣∣∣∣ = |4 + 4c|,
and the boundary is given by

|c + 1| = 1

4
.

The parametric curve is plotted in Figure 13.4 and forms a circle centered at (−1, 0)

of radius 1/4 in the Argand plane. This circle forms the “head” of the Mandelbrot
set, sometimes referred to as the potato man.

−1 −0.5 0

−0.5

0

0.5

Re z

Im
 z Period onePeriod

two

Figure 13.4: The boundary of fixed points of periods one and two for the Mandel-
brot set.

The Mandelbrot set for the nonlinear complex iterative map zn+1 = z2
n −

2zn + c is plotted in Figure 13.5.
Mandelbrot and Hudson [1] provided a fractal view of the stockmarkets, and

Chapter 14 illustrates how nonlinear complex iterative maps are being applied in
physical applications when modeling lasers and the propagation of light through
optical fibers.
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Figure 13.5: The Mandelbrot set for the mapping zn+1 = z2
n − 2zn + c.

13.3 Maple Commands
Type rand, densityplot, and patchnogrid in the Maple Help Browser for expla-
nations of what these commands do in the following programs.

> # Program 13a: Complex iteration.

> # Figure 13.1: Julia sets.

> x1:=array(0..1000000):y1:=array(0..1000000):

k:=15:iter:=2ˆk:

a:=-0.5:b:=0.3:die:=rand(0..1):

x1[0]:=Re(0.5+sqrt(0.25-(a+I*b))):

y1[0]:=Im(0.5+sqrt(0.25-(a+I*b))):

2*abs(x1[0]+I*y1[0]);

for i from 0 to iter do

x:=x1[i]:y:=y1[i]:

u:=sqrt((x-a)ˆ2+(y-b)ˆ2)/2:v:=(x-a)/2:

u1:=evalf(sqrt(u+v)):v1:=evalf(sqrt(u-v)):

x1[i+1]:=u1:y1[i+1]:=v1:if y1[i]<b then y1[i+1]:=-y1[i+1]:fi:

die();

if (die()=0) then x1[i+1]:=-u1:y1[i+1]:=-y1[i+1]:fi:od:

m:=’m’:

with(plots):

pts:=[[x1[m],y1[m]] $m=0..iter]:

pointplot(pts,style=point,symbol=solidcircle,symbolsize=4,color=black,

axes=FRAMED,scaling=CONSTRAINED,font=[TIMES,ROMAN,15]);

> # Program 13b: Color Mandelbrot set.

> # Figure 13.2.

> Mandelbrot:=proc(x,y)
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local c,z,m:

c:=evalf(x+y*I):z:=c:

for m to 50 while abs(zˆ2)<16 do z:=zˆ2+c end do:

m end:

with(plots):

densityplot(Mandelbrot,-2.2..0.8,-1.5..1.5,style=patchnogrid,

colorstyle=HUE,grid=[300,300],axes=none);

13.4 Exercises
1. Consider the Julia set given in Figure 13.1(a). Take the mapping zn+1 =

z2
n + c, where c = −0.5 + 0.3i.

(a) Iterate the initial point z0 = 0 + 0i for 500 iterations and list the final
100. Increase the number of iterations; what can you deduce about the
orbit?

(b) Iterate the initial point z0 = −1 − i and list z1 to z10. What can you
deduce about this orbit?

2. Given that c = −1 + i, determine the fixed points of periods one and two
for the mapping zn+1 = z2

n + c.

3. Consider (13.1); plot the Julia sets J (0, 0), J (−0.5, 0), J (−0.7, 0), and
J (−2, 0).

4. Compute the fixed points of period one for the complex mapping

zn+1 = 2 + zne
i|zn|2

10
.

5. Determine the boundaries of points of periods one and two for the mapping

zn+1 = c − z2
n.

6. Plot the Mandelbrot set for the mapping

zn+1 = c − z2
n.

7. Determine the fixed points of periods one and two for the mapping zn+1 =
z2
n − 2zn + c.

8. Modify the Maple program in Section 13.3 to plot a Mandelbrot set for the
mapping zn+1 = z4

n + c.

9. Determine the periods of the points (i) c = −1.3 and (ii) c = −0.1 + 0.8i

for the mapping zn+1 = z2
n + c.

10. Plot the Mandelbrot set for the mapping zn+1 = z3
n + c.



Recommended Reading and Viewing 307

Recommended Reading and Viewing
[1] B. B. Mandelbrot and R. L. Hudson, The (Mis)Behavior of Markets: A Fractal

View of Risk, Ruin And Reward, Perseus Books Group, New York, 2006.

[2] R. L. Devaney and L. Keen (eds.), Complex Dynamics: Twenty-five Years
After the Appearance of the Mandelbrot Set (Contemporary Mathematics),
American Mathematical Society, Providence, RI, 2005.

[3] R. L. Devaney, The Mandelbrot and Julia Sets: A Tool Kit of Dynamics
Activities, Key Curriculum Press, Eneryville, CA, 2002.

[4] G. W. Flake, The Computational Beauty of Nature: Computer Explorations
of Fractals, MIT Press, Cambridge, MA, 1998.

[5] H.-O. Peitgen (ed.), E. M. Maletsky, H. Jürgens, T. Perciante, D. Saupe,
and L. Yunker, Fractals for the Classroom: Strategic Activities Volume 2,
Springer-Verlag, New York, 1994.

[6] H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers
of Science, Springer-Verlag, New York, 1992.

[7] H.-O. Peitgen, H. Jürgens, D. Saupe, and C. Zahlten, Fractals: An Animated
Discussion, SpektrumAkademischer Verlag, Heidelberg, 1989; W. H. Free-
man, New York, 1990.

[8] H.-O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag,
New York, 1986.



14
Electromagnetic Waves and Optical
Resonators

Aims and Objectives
• To introduce some theory of electromagnetic waves.

• To introduce optical bistability and show some related devices.

• To discuss possible future applications.

• To apply some of the theory of nonlinear dynamical systems to model a real
physical system.

On completion of this chapter, the reader should be able to

• understand the basic theory of Maxwell’s equations;

• derive the equations to model a nonlinear simple fiber ring (SFR) resonator;

• investigate some of the dynamics displayed by these devices and plot chaotic
attractors;

• use a linear stability analysis to predict regions of instability and bistability;

• plot bifurcation diagrams using the first and second iterative methods;

• compare the results from four different methods of analysis.
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As an introduction to optics, electromagnetic waves are discussed via Max-
well’s equations.

The reader is briefly introduced to a range of bistable optical resonators, in-
cluding the nonlinear Fabry–Perot interferometer, the cavity ring, the single fiber
ring (SFR), the double-coupler fiber ring, the fiber double-ring, and a nonlinear
optical loop mirror (NOLM) with feedback. All of these devices can display hys-
teresis and all can be affected by instabilities. Possible applications are discussed
in the physical world.

Linear stability analysis is applied to the nonlinear SFR resonator. The anal-
ysis gives intervals where the system is bistable and unstable but does not give any
information on the dynamics involved in these regions. To use optical resonators as
bistable devices, the bistable region must be isolated from any instabilities. To sup-
plement the linear stability analysis, iterative methods are used to plot bifurcation
diagrams.

For a small range of parameter values, the resonator can be used as a bistable
device. Investigations are carried out to see how the bistable region is affected by
the linear phase shift due to propagation of the electric field through the fiber loop.

14.1 Maxwell’s Equations and Electromagnetic Waves
This section is intended to give the reader a simple general introduction to optics.
Most undergraduate physics textbooks discuss Maxwell’s electromagnetic equa-
tions in some detail. The aim of this section is to list the equations and show that
Maxwell’s equations can be expressed as wave equations. Maxwell was able to
show conclusively that just four equations could be used to interpret and explain a
great deal of electromagnetic phenomena.

The four equations, collectively referred to as Maxwell’s equations, did not
originate entirely with him but withAmpère, Coulomb, Faraday, Gauss, and others.
First, consider Faraday’s law of induction, which describes how electric fields are
produced from changing magnetic fields. This equation can be written as∮

C

E . dr = −∂φ

∂t
,

where E is the electric field strength, r is a spatial vector, and φ is the magnetic
flux. This equation may be written as∮

C

E . dr = − ∂

∂t

∫∫
S

B . dS,

where B is a magnetic field vector. Applying Stokes’s theorem,∫∫
S

∇ ∧ E . dS = − ∂

∂t

∫∫
S

B . dS.
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Therefore,

(14.1) ∇ ∧ E = −∂B
∂t

,

which is the point form of Faraday’s law of induction.
Ampère’s law describes the production of magnetic fields by electric currents.

Now ∮
C

H . dr =
∫∫

S

J . dS,

where H is another magnetic field vector (B = µH) and J is the current density.
By Stokes’s theorem,∮

C

H . dr =
∫∫

S

∇ ∧ H . dS =
∫∫

S

J . dS.

Therefore,

∇ ∧ H = J.

Maxwell modified this equation by adding the time rate of change of the electric
flux density (electric displacement) to obtain

(14.2) ∇ ∧ H = J + ∂D
∂t

,

where D is the electric displacement vector.
Gauss’s law for electricity describes the electric field for electric charges, and

Gauss’s law for magnetism shows that magnetic field lines are continuous without
end. The equations are

(14.3) ∇ . E = ρ

ε0
,

where ρ is the charge density and ε0 is the permittivity of free space (a vacuum),
and

(14.4) ∇ . B = 0.

In using Maxwell’s equations, (14.1)–(14.4), and solving problems in elec-
tromagnetism, the three so-called constitutive relations are also used. These are

B = µH = µrµ0H, D = εE = εrε0E, and J = σE,

where µr and µ0 are the relative permeabilities of a material and free space,
respectively, εr and ε0 are the relative permittivities of a material and free space,
respectively, and σ is conductivity.
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If E and H are sinusoidally varying functions of time, then in a region of free
space, Maxwell’s equations become

∇ . E = 0, ∇ . H = 0, ∇ ∧ E + iωµ0H = 0, and ∇ ∧ H − iωε0E = 0.

The wave equations are obtained by taking the curls of the last two equations; thus,

∇2E + ε0µ0ω
2E = 0 and ∇2H + ε0µ0ω

2H = 0,

where ω is the angular frequency of the wave. These differential equations model
an unattenuated wave traveling with velocity

c = 1√
ε0µ0

,

where c is the speed of light in a vacuum. The field equation

E(r, t) = E0 exp [i(ωt − kr)]

satisfies the wave equation, where |k| = 2π/λ is the modulus of the wave vector
and λ is the wavelength of the wave. The remarkable conclusion drawn by Maxwell
is that light is an electromagnetic wave and that its properties can all be deduced
from his equations. The electric fields propagating through an optical fiber loop
will be investigated in this chapter.

Similar equations are used to model the propagation of light waves through
different media, including a dielectric (a nonconducting material whose properties
are isotropic); see the next section. In applications to nonlinear optics, the Maxwell–
Debye or Maxwell–Bloch equations are usually used, but the theory is beyond the
scope of this book. Interested readers are referred to [4] and [14] and the research
papers listed at the beginning of this chapter.

14.2 Historical Background
In recent years, there has been a great deal of interest in optical bistability because
of its potential applications in high-speed all-optical signal processing and all-
optical computing. Indeed, in 1984 Smith [15] published an article in Nature with
the enthralling title “Towards the Optical Computer,” and in 1999 Matthews [6]
reported on work carried out by A. Wixforth and his group on the possibility of
optical memories. Bistable devices can be used as logic gates, memory devices,
switches, and differential amplifiers. The electronic components used currently
can interfere with one another, need wires to guide the electronic signals, and
carry information relatively slowly. Using light beams, it is possible to connect
all-optical components. There is no interference; lenses and mirrors can be used
to communicate thousands of channels of information in parallel; the information-
carrying capacity—the bandwidth—is enormous; and there is nothing faster than
the speed of light in the known universe.
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In 1969 Szöke et al. [23] proposed the principle of optical bistability and
suggested that optical devices could be superior to their electronic counterparts. As
reported in Chapter 6, the two essential ingredients for bistability are nonlinearity
and feedback. For optical hysteresis, nonlinearity is provided by the medium as a
refractive (or dispersive) nonlinearity, or as an absorptive nonlinearity, or as both.
Refractive nonlinearities alone will be considered in this chapter. The feedback is
introduced through mirrors or fiber loops or by the use of an electronic circuit.
The bistable optical effect was first observed in sodium vapor in 1976 at Bell
Laboratories, and a theoretical explanation was provided by Felber and Marburger
[22] in the same year. Nonlinearity was due to the Kerr effect (see Section 14.3),
which modulated the refractive index of the medium.

Early experimental apparatus for producing optical bistability consisted of
hybrid devices that contained both electronic and optical components. Materials
used included indium antimonide (InSb), gallium arsenide (GaAs), and tellurium
(Te). By 1979, micron-sized optical resonators had been constructed. A fundamen-
tal model of the nonlinear Fabry–Perot interferometer is shown in Figure 14.1.

Nonlinear
medium

I

R
T

Figure 14.1: A Fabry–Perot resonator; I, R, and T stand for incident, reflected, and
transmitted intensities, respectively.

An excellent introduction to nonlinearity in fiber optics is provided by the
textbook of Agrawal [3]. Applications in nonlinear fiber optics are presented in [1]
and [5].

A block diagram of the first electro-optic device is shown in Figure 14.2 and
was constructed by Smith and Turner in 1977 [19]. Nonlinearity is induced by the
Fabry–Perot interferometer and a He–Ne (helium–neon) laser is used at 6328 Å.
A bistable region is observed for a small range of parameter values. An isolated
bistable region is shown in Figure 14.4(a). For input values between approximately
4 and 5 units there are two possible output values. The output is dependent upon the
history of the system, that is, whether the input power is increasing or decreasing.

In theoretical studies, Ikeda et al. [18] showed that optical circuits exhibiting
bistable behavior can also contain temporal instabilities under certain conditions.
The cavity ring (CR) resonator, first investigated by Ikeda, consists of a ring cav-
ity comprising four mirrors that provide the feedback and containing a nonlinear
dielectric material (see Figure 14.3). Light circulates around the cavity in one di-
rection and the medium induces a nonlinear phase shift dependent on the intensity
of the light. Mirrors M1 and M2 are partially reflective, whereas mirrors M3 and
M4 are 100% reflective.
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Fabry–Perot

Detector
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Beamsplitter

Amplifier

I T

Figure 14.2: The first electro-optic device to display bistability.

Figure 14.3: The CR resonator containing a nonlinear dielectric medium.

Possible bifurcation diagrams for this device are shown in Figure 14.4. In
Figure 14.4(a), the bistable region is isolated from any instabilities, but in Figure
14.4(b), instabilities have encroached upon the bistable cycle. These figures are
similar to those that would be seen if the CR were connected to an oscilloscope.
However, most of the dynamics are lost; mathematically it is best to plot bifurcation
diagrams using points alone (as shown later in Figure 4.14). The lengthL is different
in the two cases and, hence, so is the cavity round-trip time (the time it takes light
to complete one loop in the cavity).

In recent years, there has been intense research activity in the field of fiber
optics. Many school physics textbooks now provide an excellent introduction to the
subject, and reference [2] provides an introduction to nonlinear optics. The interest
in this chapter, however, lies solely in the application to all-optical bistability. A
block diagram of the SFR resonator is shown in Figure 14.5. It has recently been
shown that the dynamics of this device are the same as those for the CR resonator
(over a limited range of initial time) apart from a scaling. The first all-optical
experiment was carried out using a single-mode fiber in a simple loop arrangement,
the fiber acting as the nonlinear medium [16]. In mathematical models, the input
electric field is given as

Ein(t) = ξj (t)e
iωt ,
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Figure 14.4: Possible bifurcation diagrams for the CR resonator: (a) an isolated
bistable region and (b) instabilities within the bistable region. S represents stable
behavior, P is period undoubling, and C stands for chaos.

E Ein outFiber coupler

L

Figure 14.5: A schematic of the SFR resonator. The input electric field is Ein and
the output electric field is Eout.

where ξj represents a complex amplitude (which may contain phase information)
and ω is the circular frequency of the light.

In experimental setups, for example, the light source could be a Q-switched
YAG laser operating at 1.06 µm. The optical fiber is made of fused silica and is
assumed to be lossless.

An analysis of the SFR resonator will be discussed in more detail in the
next section, and the stability of the device will be investigated in Sections 14.5
and 14.6.

The double-coupler fiber ring resonator was investigated by Li and Ogusu
[7] in 1998 (see Figure 14.6). It was found that there was a similarity between
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Fiber coupler

Fiber coupler

L

Figure 14.6: The double-coupler fiber ring resonator: Ein is the input field ampli-
tude, ER

out is the reflected output, and ET
out is the transmitted output.

the dynamics displayed by this device and the Fabry–Perot resonator in terms of
transmission and reflection bistability. It is possible to generate both clockwise
and counterclockwise hysteresis loops using this device. An example of a coun-
terclockwise bistable cycle is given in Figure 14.4(a). The reader will be asked to
carry out some mathematical analysis for this device in the exercises at the end of
the chapter (Section 14.8).

In 1994, Ja [11] presented a theoretical study of an optical fiber double-ring
resonator, as shown in Figure 14.7. Ja predicted multiple bistability of the output
intensity using the Kerr effect. However, instabilities were not discussed. It was
proposed that this type of device could be used in new computer logic systems
where more than two logic states are required. In principle, it is possible to link a
number of loops of fiber, but instabilities are expected to cause some problems.

EFiberFiber

3

E couplercoupler outin 2

1

L

LL

Figure 14.7: A fiber double-ring resonator with two couplers.

The nonlinear optical loop mirror (NOLM) with feedback ([10] and [13]) has
been one of the most novel devices for demonstrating a wide range of all-optical
processing functions, including optical logic. The device is shown in Figure 14.8.
Note that the beams of light are counterpropagating in the large loop but not in the
feedback section and that there are three couplers.

All of the devices discussed thus far can display bistability and instability
leading to chaos. In order to understand some of these dynamics, the SFR resonator
will now be discussed in some detail.
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Figure 14.8: A schematic of a NOLM with feedback.
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κ : 1 − κ

Figure 14.9: The SFR resonator. The electric field entering the fiber ring is labeled
E1 and the electric field leaving the fiber ring is labeled E2. The coupler splits the
power intensity in the ratio κ : 1 − κ .

14.3 The Nonlinear SFR Resonator
Consider the all-optical fiber resonator as depicted in Figure 14.9 and define the
slowly varying complex electric fields as indicated.

Note that the power P and intensity I are related to the electric field in the
following way:

P ∝ I ∝ |E|2.
If the electric field crosses the coupler, then a phase shift is induced, which is
represented by a multiplication by i in the equations. Assume that there is no loss
at the coupler. Then, across the coupler, the complex field amplitudes satisfy the
following equations:

(14.5) E1 = √
κE2 + i

√
1 − κEin

and

(14.6) Eout = √
κEin + i

√
1 − κE2,
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where κ is the power-splitting ratio at the coupler. Consider the propagation from
E1 to E2. Then

(14.7) E2 = E1e
iφ,

where the total loss in the fiber is negligible (typically about 0.2 dB/km) and

φ = φL + φNL.

The linear phase shift is φL, and the nonlinear phase shift due to propagation is
given by

φNL = 2πr2L

λ0Aeff
|E1|2,

where λ0 is the wavelength of propagating light in a vacuum, Aeff is the effective
core area of the fiber, L is the length of the fiber loop, and r2 is the nonlinear
refractive index coefficient of the fiber. It is well known that when the optical
intensity is large enough, the constant r2 satisfies the equation

r = r0 + r2I = r0 + r2r0

2η0
|E1|2 = r0 + r2

P

Aeff
,

where r is the refractive index of the fiber, r0 is the linear value, I is the instan-
taneous optical intensity, and P is the power. If the nonlinearity of the fiber is
represented by this equation, then the fiber is said to be of Kerr type. In most ap-
plications, it is assumed that the response time of the Kerr effect is much less than
the time taken for light to circulate once in the loop.

Substitute (14.7) into (14.5) and (14.6). Simplify to obtain

E1(t) = i
√

1 − κEin(t) + √
κE1(t − tR)eiφ(t−tR),

where tR = rL
c

is the time taken for the light to complete one loop, r is the refractive
index, and c is the velocity of light in a vacuum. Note that this is an iterative formula
for the electric field amplitude inside the ring. Take time steps of length equal to
tR . This expression can be written more conveniently as an iterative equation of
the form

(14.8) En+1 = A + BEn exp

(
i

(
2πr2L

λ0Aeff
|En|2 + φL

))
,

where A = i
√

1 − κEin, B = √
κ , and Ej is the electric field amplitude at the j th

circulation around the fiber loop. Typical fiber parameters chosen for this system
are λ0 = 1.55 × 10−6 m, r2 = 3.2 × 10−20 m2W−1, Aeff = 30 µm2, and
L = 80 m.

Equation (14.8) may be scaled without loss of generality to the simplified
equation

(14.9) En+1 = A + BEn exp
[
i(|En|2 + φL)

]
.

Some of the dynamics of (14.9) will be discussed in the next section.
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14.4 Chaotic Attractors and Bistability
Split (14.9) into its real and imaginary parts by setting En = xn + iyn, and set
φL = 0. The equivalent real two-dimensional system is given by

xn+1 = A + B
(
xn cos|En|2 − yn sin |En|2

)
,

yn+1 = B
(
xn sin|En|2 + yn cos |En|2

)
,

(14.10)

where |B| < 1. This system is one version of the so-called Ikeda map. As with
the Hénon map, introduced in Chapter 12, the Ikeda map can have fixed points of
all periods. In this particular case, system (14.10) can have many fixed points of
period one depending on the parameter values A and B.

Example 1. Determine and classify the fixed points of period one for system
(14.10) when B = 0.15 and

(i) A = 1;

(ii) A = 2.2.

Solution. The fixed points of period one satisfy the simultaneous equations

x = A + Bx cos(x2 + y2) − By sin(x2 + y2)

and

y = Bx sin(x2 + y2) + By cos(x2 + y2).

(i) When A = 1 and B = 0.15, there is one solution at x1,1 ≈ 1.048, y1,1 ≈
0.151. The solution is given graphically in Figure 14.10(a). To classify the
critical point P ∗ = (x1,1, y1,1), consider the Jacobian matrix

J (P ∗) =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠
∣∣∣∣∣∣
P ∗

.

The eigenvalues of the Jacobian matrix at P ∗ are λ1 ≈ −0.086+0.123i and
λ2 ≈ −0.086 − 0.123i. Therefore, P ∗ is a stable fixed point of period one.

(ii) When A = 2.2 and B = 0.15, there are three points of period one, as
the graphs in Figure 14.10(b) indicate. The fixed points occur approxi-
mately at the points U = (2.562, 0.131), M = (2.134, −0.317), and
L = (1.968, −0.185). Using the Jacobian matrix, the eigenvalues for U are
λ1,2 = −0.145±0.039i; the eigenvalues for M are λ1 = 1.360, λ2 = 0.017;
and the eigenvalues for L are λ1 = 0.555, λ2 = 0.041.
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Figure 14.10: [Maple] The fixed points of period one are determined by the
intersections of the two curves, x = A+ 0.15x cos(x2 + y2)− 0.15y sin(x2 + y2)

and y = 0.15x sin(x2 +y2)+0.15y cos(x2 +y2); (a) A = 1 and (b) A = 2.2. Note
in case (b) that the small closed curve and the vertical curve form one solution set.

Therefore, U and L are stable fixed points of period one, whereas M is an
unstable fixed point of period one. These three points are located within a bistable
region of the bifurcation diagram given later in this chapter. The point U lies on
the upper branch of the hysteresis loop and the point L lies on the lower branch.
Since M is unstable, it does not appear in the bifurcation diagram but is located
between U and L.

As the parameter A changes, the number of fixed points and the dynamics of
the system change. For example, when A = 1, there is one fixed point of period
one; when A = 2.2, there are two stable fixed points of period one and one unstable
fixed point of period one; when A = 2.4, there are two stable fixed points of period
two. As A increases the system displays chaotic behavior (see Example 2). All of
the information can be summarized on a bifurcation diagram that will be shown
later in this chapter.

Example 2. Plot iterative maps for system (14.10) when B = 0.15 and

(a) A = 5;

(b) A = 10.

Solution. Two chaotic attractors for system (14.10) are shown in Figure 14.11.

Theorem 1. The circle of radius |AB|
1−B

centered at A is invariant for system (14.10).
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Figure 14.11: [Maple] The chaotic attractors when (a) A = 5 (5000 iterates) and
(b) A = 10 (5000 iterates).

Proof. Suppose that a general initial point in the Argand diagram is taken to be
En; then the first iterate is given by

En+1 = A + BEne
i|En|2 .

The second iterate can be written as

En+2 = A + BEn+1e
i|En+1|2 = A + B

(
A + BEne

i|En|2) ei|En+1|2 .

Thus,

En+2 = A + ABei|En+1|2 + B2Ene
i(|En|2+|En+1|2).

Using a similar argument, the third iterate is

En+3 = A + B
(
A + ABei|En+1|2 + B2Ene

i(|En|2+|En+1|2)
)

ei|En+2|2 .

Therefore,

En+3 = A+ABei|En+2|2 +AB2ei(|En+1|2+|En+2|2)+B3Ene
i(|En|2+|En+1|2+|En+2|2).

A general expression for the N th iterate En+N is not difficult to formulate. Hence,

En+N =A + ABei|En+N−1|2 + AB2ei(|En+N−2|2+|En+N−1|2) + · · ·

+ ABN−1 exp

⎛
⎝i

N−1∑
j=1

|En+j |2
⎞
⎠ + BNEn exp

⎛
⎝i

N−1∑
j=0

|En+j |2
⎞
⎠ .
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As N → ∞, BN → 0, since 0 < B < 1. Set Rj = |En+N−j |2. Then

|En+N − A| = |ABeiR1 + AB2ei(R1+R2) + · · · + ABN−1ei(R1+R2+···+RN−1)|.
Since |z1 + z2 + · · · + zm| ≤ |z1| + |z2| + · · · + |zm| and |eiθ | = 1,

|En+N − A| ≤ |AB| + |AB2| + · · · + |ABN−1|.
This forms an infinite geometric series as N → ∞. Therefore,

|En+N − A| ≤ |AB|
1 − B

.

The disk given by |E − A| = AB/(1 − B) is positively invariant for system
(14.10). The invariant disks in two cases are easily identified in Figures 14.11(a)
and 14.11(b).

14.5 Linear Stability Analysis
To investigate the stability of the nonlinear SFR resonator, a linear stability analysis
(see Chapter 1) will be applied. A first-order perturbative scheme is used to predict
the values of a parameter where the stationary solutions become unstable. Briefly,
a small perturbation is added to a stable solution and a Taylor series expansion
is carried out, the nonlinear terms are ignored, and a linear stability analysis is
applied.

It was shown in Section 14.3 that the following simplified complex iterative
equation can be used to model the electric field in the fiber ring:

(14.11) En+1 = A + BEn exp
[
i
(
|En|2 − φL

)]
,

where En is the slowly varying field amplitude, A = i
√

1 − κEin, is related to the
input, B = √

κ , where κ is the power coupling ratio, and φL is the linear phase shift
suffered by the electric field as it propagates through the fiber loop. To simplify
the linear stability analysis, there is assumed to be no loss at the coupler and the
phase shift φL is set to zero. The effect of introducing a linear phase shift will be
discussed later in this chapter.

Suppose that ES is a stable solution of the iterative equation (14.11). Then

ES = A + BESei|ES |2 .

Therefore,

A = ES

[
1 − B

(
cos(|ES |2) + i sin|ES |2

)]
.
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Using the relation |z|2 = zz∗, where z∗ is the conjugate of z,

|A|2 =
(
ES

[
1 − B

(
cos(|ES |2) + i sin|ES |2

)])
×

(
E∗

S

[
1 − B

(
cos(|ES |2) − i sin |ES |2

)])
.

Hence,

(14.12) |A|2 = |ES |2
(

1 + B2 − 2B cos(|ES |2)
)

.

The stationary solutions of system (14.11) are given as a multivalued function of
A satisfying (14.12). This gives a bistable relationship equivalent to the graphical
method, which is well documented in the literature; see, for example, [12], [20],
and [21].

Differentiate (14.12) to obtain

(14.13)
d|A|2
d|ES |2 = 1 + B2 + 2B

(
|ES |2 sin(|ES |2) − cos(|ES |2)

)
.

To establish where the stable solutions become unstable, consider a slight
perturbation from the stable situation in the fiber ring, and let

(14.14) En(t) = ES + ξn(t) and En+1(t) = ES + ξn+1(t),

where ξn(t) is a small time-dependent perturbation to ES . Substitute (14.14) into
(14.11) to get

ES + ξn+1 = A + B(ES + ξn) exp
[
i(ES + ξn)(E

∗
S + ξ∗

n )
]
,

so

(14.15) ES +ξn+1 = A+B(ES +ξn) exp[i|ES |2] exp[i(ESξ∗
n +ξnE

∗
S +|ξn|2)].

Take a Taylor series expansion of the exponential function to obtain

exp
[
i(ESξ∗

n + ξnE
∗
S + |ξn|2)

]
=1 + i(ESξ∗

n + ξnE
∗
S + |ξn|2)

+ i2(ESξ∗
n + ξnE

∗
S + |ξn|2)2

2
+ · · · .

Ignore the nonlinear terms in ξn. Equation (14.15) then becomes

ES + ξn+1 = A + B(ES + ξn) exp[i|ES |2] (1 + iESξ∗
n + ξnE

∗
S

)
.

Since A = ES − BES exp[i|ES |2], the equation simplifies to

ξn+1 = B
(
ξn + i|ES |2ξn + i(ES)2ξ∗

n

)
exp

(
i|ES |2

)
.(14.16)
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Since ξ is real, it may be split into its positive and negative frequency parts
as follows:

(14.17) ξn = E+eλt + E−eλ∗t and ξn+1 = E+eλ(t+tR) + E−eλ∗(t+tR),

where |E+| and |E−| are much smaller than |ES |, tR is the fiber ring round-trip
time, and λ is the amplification rate of a small fluctuation added to a stable solution.
Substitute (14.17) into (14.16). Then the validity of (14.16) at all times t requires
that

E+eλtR = B
(
E+ + i|ES |2E+ + iE2

SE∗−
)

exp
(
i|ES |2

)
,

E∗−eλtR = B
(
E∗− − i|ES |2E∗− − i

(
E∗

S

)2
E+

)
exp

(
−i|ES |2

)
,

or, equivalently,(
β
(
1 + i|ES |2) − eλtR iβE2

S−iβ∗(E∗
S)2 β∗ (1 − i|ES |2) − eλtR

)(
E+
E∗−

)
=

(
0
0

)
,

where β = B exp
(
i|ES |2). To obtain a valid solution, the characteristic equation

must be solved:

e2λtR − 2eλtRB
(

cos |ES |2 − |ES |2 sin |ES |2
)

+ B2 = 0.

Substituting from (14.13), the characteristic equation becomes

(14.18) e2λtR − eλtR

(
1 + B2 − d|A|2

d|ES |2
)

+ B2 = 0.

Let D = d|A|2
d|ES |2 . The stability edges for ES occur where eλtR = +1 and eλtR = −1,

since this is a discrete mapping. Using (14.18), this yields the conditions

D+1 = 0 and D−1 = 2
(

1 + B2
)

.

Thus, the system is stable as long as

(14.19) 0 < D < 2
(

1 + B2
)

.

The condition D = 0 marks the boundary between the branches of positive and
negative slope on the graph of |ES |2 versus |A|2 and hence defines the regions
where the system is bistable. Thus the results from the graphical method match
with the results from the linear stability analysis. The system becomes unstable at
the boundary where D = D−1.

It is now possible to apply four different methods of analysis to determine
the stability of the electric field amplitude in the SFR resonator. Linear stability
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analysis may be used to determine both the unstable and bistable regions and
bifurcation diagrams can be plotted. The graphical method [3] is redundant in this
case.

There are two methods commonly used to plot bifurcation diagrams: the first
and second iterative methods.

The First Iterative Method. A parameter is fixed and one or more initial points
are iterated forward. Transients are ignored and a number of the final iterates
are plotted. The parameter is then increased by a suitable step length and the
process is repeated. There are many points plotted for each value of the parameter.
For example, the bifurcation diagrams plotted in Sections 12.3 and 12.4 were all
generated using the first iterative method.

The Second Iterative Method. A parameter is varied and the solution to the previ-
ous iterate is used as the initial condition for the next iterate. In this way, a feedback
mechanism is introduced. In this case, there is a history associated with the process
and only one point is plotted for each value of the parameter. For example, most
of the bifurcation diagrams plotted in Section 14.6 were plotted using the second
iterative method.

The first and second iterative methods are used in other chapters of the book.

14.6 Instabilities and Bistability
In the previous section, the results from the linear stability analysis established that
system (14.11) is stable as long as (14.19) is satisfied. A possible stability diagram

for system (14.11) is given in Figure 14.12, which shows the graph of D = d|A|2
d|ES |2

and the bounding lines D+1 = 0 and D−1 = 2
(
1 + B2

)
when B = 0.15.

Table 14.1 lists the first two bistable and unstable intensity regions for the
SFR resonator (in Watts per meter squared in physical applications) for a range of
fixed values of the parameter B.

The dynamic behavior of system (14.11) may also be investigated by plotting
bifurcation diagrams using either the first or second iterative methods. In order to
observe any hysteresis, one must, of course, use the second iterative method, which
involves a feedback. The method developed by Bischofberger and Shen [20] in
1979 for a nonlinear Fabry–Perot interferometer is modified and used here for the
SFR resonator. The input intensity is increased to a maximum and then decreased
back to zero, as depicted in Figure 14.13. In this case, the simulation consists of
a triangular pulse entering the ring configuration, but it is not difficult to modify
the Maple program to investigate Gaussian input pulses. The input intensity is
increased linearly up to 16 Wm−2 and then decreased back down to zero. Figure
14.13 shows the output intensity and input intensity against the number of passes
around the ring, which in this particular case was 4000. To observe the bistable
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Figure 14.12: Stability diagram for the SFR resonator when B = 0.15 (κ =
0.0225). The system is stable as long as 0 < D < 2

(
1 + B2

)
.

Table 14.1: The first two regions of bistability and instability computed for the
SFR resonator to three decimal places using a linear stability analysis.

First First Second Second
B bistable region unstable region bistable region unstable region

A2/Wm−2 A2/Wm−2 A2/Wm−2 A2/Wm−2

0.05 10.970–11.038 12.683–16.272 16.785–17.704 17.878–23.561
0.15 4.389–4.915 5.436–12.007 9.009–12.765 9.554–20.510
0.3 3.046–5.951 1.987–4.704 6.142–16.175 3.633–15.758
0.6 1.004–8.798 1.523–7.930 2.010–24.412 1.461–24.090
0.9 0.063–12.348 1.759–11.335 0.126–34.401 0.603–34.021

region, it is necessary to display the ramp-up and ramp-down parts of the diagram
on the same graph, as in Figure 14.14(b).

Figure 14.14 shows a gallery of bifurcation diagrams, corresponding to some
of the parameter values used in Table 14.1 produced using the second iterative
method. The diagrams make interesting comparisons with the results displayed in
Table 14.1.

A numerical investigation has revealed that for a small range of values close
to B = 0.15 (see Figure 14.14(b)), the SFR resonator could be used as a bistable
device. Unfortunately, for most values of B, instabilities overlap with the first
bistable region. For example, when B = 0.3 (Figure 14.14(c)), the first unstable
region between 1.987 Wm−2 and 4.704 Wm−2 intersects with the first bistable
region between 3.046 Wm−2 and 5.951 Wm−2. Clearly, the instabilities have
affected the bistable operation. In fact, the hysteresis cycle has failed to materialize.
Recall that B = √

κ , where κ is the power coupling ratio. As the parameter B gets
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Figure 14.13: Bifurcation diagram when B = 0.15 using the second iterative
method showing a plot of triangular input and output intensities against number of
ring passes for the SFR resonator.

larger, more of the input power is circulated in the ring, and this causes the system
to become chaotic for low input intensities.

The first iterative method can be employed to show regions of instability.
Note, however, that bistable regions will not be displayed since there is no feed-
back in this method. It is sometimes possible for a small unstable region to be
missed using the second iterative method. The steady state remains on the unsta-
ble branch until it becomes stable again. Thus, in a few cases, the first iterative
method gives results which may be missed using the second iterative method. As
a particular example, consider system (14.10) where B = 0.225. Results from
a linear stability analysis indicate that there should be an unstable region in the
range 2.741–3.416 Wm−2. Figure 14.15(a) shows that this region is missed using
the second iterative method, whereas the first iterative method (Figure 14.15(b))
clearly displays period-two behavior. In physical applications, one would expect
relatively small unstable regions to be skipped, as in the former case.

Consider the complex iterative equation

(14.20) En+1 = i
√

1 − κEin + √
κEn exp

[
i

(
2πn2L

λ0Aeff
|En|2 − φL

)]
,

which was derived earlier. Equation (14.20) is the iterative equation that models
the electric field in the SFR resonator. Typical fiber parameters chosen for this
system are λ0 = 1.55 × 10−6 m, n2 = 3.2 × 10−20 m2W−1, Aeff = 30 µm2, and
L = 80 m. Suppose that (14.11) was iterated 10,000 times. This would equate to
hundredths of a second of elapsed time in physical applications using these values
for the fiber parameters.
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Figure 14.14: A gallery of bifurcation diagrams for the SFR resonator when (a)
B = 0.05, (b) B = 0.15, (c) B = 0.3, and (d) B = 0.6. In each case, 6000
iterations were carried out.

In the work considered so far, the linear phase shift due to propagation φL

has been set to zero. Figure 14.16 shows how the bistable region is affected when
φL is nonzero and B = 0.15. As the linear phase shift increases from zero to π

4 ,
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Figure 14.15: Bifurcation diagrams when B = 0.225 (a) using the second iterative
method with feedback and (b) using the first iterative method without feedback.

the first bistable region gets larger and shifts to the right slightly, as depicted in
Figure 14.16(b). When φL = π

2 , an instability has appeared between 20 Wm−2 and
40 Wm−2 and a second unstable region has encroached on the first bistable region,
as shown in Figure 14.16(c). When φL = π , instabilities appear at both ends of the
bistable region, as shown in Figure 14.16(d). Therefore, the linear phase shift can
affect the bistable operation of the SFR resonator. Should such systems be used for
bistable operation, then the results indicate the need to control the feedback phase
to prevent any instabilities from entering the power range in the hysteresis loop.

In conclusion, the dynamic properties of a nonlinear optical resonator have
been analyzed using a graphical method, a linear stability analysis, and bifurcation
diagrams. The bifurcation diagrams give a clearer insight into the dynamics than
the results from the linear stability analysis and graphical method, but all four used
in conjunction provide useful results.

14.7 Maple Commands

> # Program 14a: Complex iterative map.

> # Figure 14.11: Chaotic attractor for the Ikeda map.

> restart:

E1:=array(0..10000):x1:=array(0..10000):y1:=array(0..10000):

maxm:=5000:B:=0.15:A:=10:E1[0]:=A:x1[0]:=A:y1[0]:=0:

for i from 0 to maxm do

E1[i+1]:=evalf(A+B*E1[i]*exp(I*(abs(E1[i]))ˆ2)):

x1[i+1]:=Re(E1[i+1]):y1[i+1]:=Im(E1[i+1]):end do:
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Figure 14.16: [Maple] Bifurcation diagrams for the SFR resonator using (14.10)
when B = 0.15 and (a) φL = 0, (b) φL = π

4 , (c) φL = π
2 , and (d) φL = π .

with(plots):

points1:=[[x1[n],y1[n]]$n=180..maxm]:

pointplot(points1,style=point,symbol=solidcircle,symbolsize=4,

color=blue,scaling=CONSTRAINED,axes=BOXED);
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> # Program 14b: Determining fixed points of period 1.

> # Figure 14.10b: Intersecting curves.

> B:=0.15:A:=2.2:

fsolve({A+B*(x*cos((xˆ2+yˆ2))-y*sin((xˆ2+yˆ2)))-x,B*(x*sin((xˆ2+yˆ2))+

y*cos((xˆ2+yˆ2)))-y},{x,y},{x=2.4..2.7,y=-0.5..0.5});

l1:=implicitplot(A+B*(x*cos((xˆ2+yˆ2))-y*sin((xˆ2+yˆ2)))-x,x=0..4,

y=-5..5,grid=[100,100],color=red):

l2:=implicitplot(B*(x*sin((xˆ2+yˆ2))+y*cos((xˆ2+yˆ2)))-y,x=0..4,

y=-5..5,grid=[100,100],color=blue):

display({l1,l2},axes=BOXED);

> # Program 14c: Bifurcation diagram.

> # Figure 14.14b: Bifurcation diagram for a SFR resonator.

> E1:=array(0..10000):E2:=(array..10000):Esqr:=array(0..10000):

Esqr1:=array(0..10000):Asqr:=array(0..10000):

halfm:=1999:mmax:=2*halfm+1:hh:=1+halfm:

E1[0]:=0:C:=0.345913:kappa:=0.0225:Pmax:=120:phi:=0:

# Ramp up

for i from 0 to halfm do

E2[i+1]:=evalf(E1[i]*exp(I*((abs(C*E1[i]))ˆ2-phi))):

E1[i+1]:=evalf(I*sqrt(1-kappa)*sqrt((i)*Pmax/hh)+sqrt(kappa)*E2[i+1]):

Esqr[i+1]:=(abs(E1[i+1]))ˆ2:end do:

# Ramp down

halfm1:=halfm+1:

for i from halfm1 to mmax do

E2[i+1]:=evalf(E1[i]*exp(I*((abs(C*E1[i]))ˆ2-phi))):

E1[i+1]:=evalf(I*sqrt(1-kappa)*sqrt(2*Pmax-(i)*Pmax/hh)+sqrt(kappa)*E2

[i+1]):

Esqr[i+1]:=(abs(E1[i+1]))ˆ2:end do:

for i from 1 to halfm do

Esqr1[i]:=Esqr[mmax+1-i]:end do:

# The Bifurcation Diagram #

with(plots):

points1:=[n*Pmax/halfm1,Esqr[n]]$n=1..halfm:

points2:=[n*Pmax/halfm1,Esqr1[n]]$n=1..halfm:

t1:=textplot([100,1,‘Input‘],align=ABOVE):

t2:=textplot([5,140,‘Output‘],align=RIGHT):

p1:=pointplot({points1,points2},style=point,symbol=solidcircle,

symbolsize=4,color=blue):

display({p1,t1,t2},font=[TIMES,ROMAN,15],axes=FRAMED);

14.8 Exercises
1. Determine the number of fixed points of period one for system (14.10) when

B = 0.4 and A = 3.9 by plotting the graphs of the simultaneous equations.
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2. Plot iterative maps for (14.8), using the parameter values given in the text,
when κ = 0.0225 and (i) Ein = 4.5, (ii) Ein = 6.3, and (iii) Ein = 11.

3. Given that

En+1 = A + BEne
i|En|2 ,

prove that the inverse map is given by

En+1 =
(

En − A

B

)
exp

(−i|En − A|2
B2

)
.

4. Given the complex Ikeda mapping

En+1 = A + BEn exp

[
i

(
φ − C

1 + |En|2
)]

,

where A, B, and C are constants, show that the steady-state solution, say,
En+1 = En = ES , satisfies the equation

cos

(
C

1 + |ES |2 − φ

)
= 1

2B

(
1 + B2 − A2

|ES |2
)

.

5. Consider the double-coupler nonlinear fiber ring resonator as shown in Fig-
ure 14.17.

3

κ : 1 − κ

κ : 1 − κ

L /2 L /2

E

2E

4 1E

E

T

RinE E

E

Figure 14.17: Schematic of a double-coupler fiber ring resonator.
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Suppose that

ER(t) = √
κEin(t) + i

√
1 − κE4(t);

E1(t) = i
√

1 − κEin(t) + √
κE4(t);

E2(t) = E1(t − tR)eiφ1(t−tR);
φ1(t − tR) = πr2L

λAeff
|E1(t − tR)|2;

E3(t) = √
κE2(t);

ET (t) = i
√

1 − κE2(t);
E4(t) = E3(t − tR)eiφ2(t−tR);

φ2(t − tR) = πr2L

λAeff
|E3(t − tR)|2,

where the fiber loop is of length L, both halves are of length L/2, tR is
the time taken for the electric field to complete half a fiber loop, and both
couplers split the power in the ratio κ : 1 − κ . Assuming that there are no
losses in the fiber, show that

ET (t) = −(1−κ)Ein(t−tR)eiφ1(t−tR)+κET (t−2tR)ei(φ1(t−tR)+φ2(t−2tR)).

6. Consider the complex iterative equation

En+1 = A + BEn exp
[
i
(
|En|2

)]
used to model the SFR resonator. Use a linear stability analysis to determine
the first bistable and unstable regions when (a) B = 0.1, (b) B = 0.2, and
(c) B = 0.25 to three decimal places, respectively.

7. Plot bifurcation diagrams for Exercise 6, parts (a)–(c), when the maximum
input intensity is 25 Wm−2 and the input pulse is triangular.

8. Plot the bifurcation diagram for the iterative equation in Exercise 6 for B =
0.15 when the input pulse is Gaussian with a maximum of 25 Wm−2. How
is the bistable region affected by the width of the pulse?

9. Consider the complex iterative equation

En+1 = A + BEn exp
[
i
(
|En|2 − φL

)]
,

where B = 0.15 and φL represents a linear phase shift. Plot bifurcation
diagrams for a maximum input intensity of A = 3 units when

(a) φL = π
4 ,
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(b) φL = π
2 ,

(c) φL = 3π
4 ,

(d) φL = π ,

(e) φL = 5π
4 ,

(f) φL = 3π
2 ,

(g) φL = 7π
4 .

10. Apply the linear stability analysis to the iterative equation

En+1 = i
√

1 − κEin + √
κEn exp

[
i

(
2πn2L

λ0Aeff
|En|2

)]
,

for the parameter values given in this chapter. Compare the results with the
bifurcation diagrams.
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15
Fractals and Multifractals

Aims and Objectives
• To provide a brief introduction to fractals.

• To introduce the notion of fractal dimension.

• To provide a brief introduction to multifractals and define a multifractal
formalism.

• To consider some very simple examples.

On completion of this chapter, the reader should be able to

• plot early-stage generations of certain fractals using either graph paper, pen-
cil, and rule, or the Maple package;

• determine the fractal dimension of some mathematical fractals;

• estimate the fractal dimension using simple box-counting techniques;

• distinguish between homogeneous and heterogeneous fractals;

• appreciate how multifractal theory is being applied in the real world;

• construct multifractal Cantor sets and Koch curves and plot graphs of their
respective multifractal spectra.
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Fractals are introduced by means of some simple examples, and the fractal
dimension is defined. Box-counting techniques are used to approximate the fractal
dimension of certain early-stage generation fractals, which can be generated using
pencil, paper, and rule.

A multifractal formalism is introduced that avoids some of the more abstract
pure mathematical concepts. The theory is explained in terms of box-counting
dimensions, which are introduced in this chapter. This is potentially a very compli-
cated topic, and readers new to this field are advised to look at Example 4 before
attempting to understand the formalism.

Some applications of multifractal analysis to physical systems in the real
world are also discussed. A few simple self-similar multifractals are constructed,
and the analysis is applied to these objects.

15.1 Construction of Simple Examples
Definition 1. A fractal is an object that displays self-similarity under magnification
and can be constructed using a simple motif (an image repeated on ever-reduced
scales).

Fractals have generated a great deal of interest since the advent of the com-
puter. Many shops now sell colorful posters and T-shirts displaying fractals, and
some black-and-white fractals have been plotted in Chapter 13. Although the Julia
sets and the Mandelbrot set are not true fractals, they do have fractal structure.
Many objects in nature display this self-similarity at different scales; for example,
cauliflower, ferns, trees, mountains, clouds, and even blood vessel networks in our
own bodies have some fractal structure. These objects cannot be described using
the geometry of lines, planes, and spheres. Instead, fractal geometry is required.
Fractal analysis is being applied in many branches of science—for example, to
computer graphics and image compression (take a closer look at the images on the
Web) and to oil extraction from rocks using viscous fingering—and multifractal
analysis has expanded rapidly over recent years (see later in this chapter).

It is important to note that all of the fractals appearing in this textbook are
early-generation fractals. However, there is nothing to stop scientists from imag-
ining an ideal mathematical fractal that is constructed to infinity. Some of these
fractals will now be investigated.

The Cantor Set. The Cantor fractal was first considered by Georg Cantor in 1870.
It is constructed by removing the middle third of a line segment at each stage of
construction. Thus, at stage 0, there is one line segment of unit length. At stage
1, the middle third is removed to leave two segments each of length 1

3 . At stage
2, there will be four segments each of length 1

9 . Continuing in this way, it is not
difficult to see that at the kth stage, there will be N = 2k segments each of length
l = 3−k . An early-stage construction (up to stage 3) is shown in Figure 15.1.

If this process is continued to infinity, then
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Stage 3

Stage 2

Stage 1

Stage 0

Figure 15.1: An early generation of the Cantor set.

lim
k→∞ 2k = ∞ and lim

k→∞ 3−k = 0.

The Cantor set will therefore consist of an infinite number of discrete points that,
unfortunately, is impossible to generate on a computer screen. However, all is not
lost. By using the ternary number system, it is possible to classify which points in
the unit interval belong to the Cantor set and which do not. Recall that ternary proper
fractions can be expanded by applying a simple algorithm: Treble the numerator
of the proper fraction concerned; when this number is larger than or equal to the
denominator, subtract the denominator, noting down the ternary factor above the
line, and continue with the remainder. For example, 4

7 = 0.120102, since

1 2 0 1 0 2 1 . . .

4 12
5 15

1 3 9
2 6 18

4 12
5 . . . ,

where the underlining after the decimal point represents a recurring decimal. It
is not too difficult to show that the Cantor set can be identified by points whose
ternary fractions consist of zeros and twos only. Thus, p1 = 0.20202 will belong
to the Cantor set, whereas p2 = 0.120102 will not.

The Koch Curve. Helge von Koch first imagined the Koch curve in 1904. It is
constructed by replacing a unit line segment with a motif consisting of four line
segments each of length 1

3 , as depicted in Figure 15.2.
A simple Maple program is given in Section 15.5 to plot early generations of

the Koch curve. Note that at the kth stage, there are N = 4k line segments each of
length l = 3−k . Thus, for the mathematical fractal constructed to infinity,

lim
k→∞ 4k = ∞ and lim

k→∞ 3−k = 0,

so the mathematical Koch curve consists of a curve that is infinitely long.

The Koch Square. Consider a variation of the Koch curve that is constructed by
replacing one line segment with five line segments each of length 1

3 . Furthermore,
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Stage 0 Stage 1

Stage 2 Stage 3

Stage 4 Stage 5

Figure 15.2: [Maple] Construction of the Koch curve up to stage 5.

suppose that these curves are attached to the outer edge of a unit square. The first
five stages of construction are shown in Figure 15.3.

It is possible to determine the area and perimeter bounded by the Koch square
in the following way. Suppose that at stage 0, the square has area A0 = 1 unit2 and
that the area at stage k is Ak . Then

A1 = 1 + 4(3−2) unit2.

At stage 2, the area is given by

A2 = 1 + 4(3−2) + 4 × 5 × (3−4) unit2.

Continuing in this way, the area at the kth stage is given by

Ak = 1+4(3−2)+4×5×(3−4)+4×52 ×(3−6)+· · ·+4×5k−1 ×(3−2k) unit2.

Take the limit k → ∞. Then

A∞ = 1 + 4

9
+

∞∑
i=1

4 × 5i × (9−(i+1)) unit2.

This is the sum of an infinite geometric series, and, hence,

A∞ = 1 + 4

9
+

4×5
92

1 − 5
32

= 2 unit2.
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Stage 0 Stage 1

Stage 2 Stage 3

Stage 4 Stage 5

Figure 15.3: [Maple] The Koch square fractal constructed to stage 5.



342 15. Fractals and Multifractals

Figure 15.4: The inverted Koch square at stage 5.

It is not difficult to show that the perimeter Pk at the kth stage is given by

Pk = 4 ×
(

5

3

)k

,

and P∞ = ∞. Therefore, the Koch square has infinite perimeter and finite area.
It is possible to construct an inverted Koch square fractal by attaching the

Koch curves to the inner edge of the unit square. The result up to stage 5 is shown
in Figure 15.4.

The Sierpiński Triangle. This fractal may be constructed in a number of ways;
see the exercises at the end of the chapter (Section 15.6). One way is to play a
so-called chaos game with a die. Consider an equilateral triangle with vertices A,
B, and C, as depicted in Figure 15.5.

B

A

x0

C

Figure 15.5: A triangle used in the chaos game with an initial point x0.
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The rules of the chaos game are very simple. Start with an initial point x0
somewhere inside the triangle.

Step 1. Cast an ordinary cubic die with six faces.

Step 2. If the number is either 1 or 2, move halfway to the point A and plot a point.

Step 2. Else, if the number is either 3 or 4, move halfway to the point B and plot a
point.

Step 2. Else, if the number is either 5 or 6, move halfway to the point C and plot a
point.

Step 3. Starting with the new point generated in Step 2, return to Step 1.

The die is cast again and again to generate a sequence of points {x0, x1, x2, x3, . . . }.
As with the other fractals considered here, the mathematical fractal would consist
of an infinite number of points. In this way, a chaotic attractor is formed, as depicted
in Figure 15.6. A Maple program is given in Section 15.5.

Figure 15.6: [Maple] An early-stage-generation Sierpiński triangle plotted using
the chaos game. There are 50,000 points plotted.

The first few initial points are omitted to reveal the chaotic attractor. This
object is known as the Sierpiński triangle.

Stochastic processes can be introduced to obtain fractals that look more like
objects in nature. We restrict ourselves to two-dimensional figures only in this
chapter.

Definition 2. An iterated function system (IFS) is a finite set T1, T2, T3, . . . , Tn of
affine linear transformations of �2, where

Tj (x, y) = (
ajx + bjy + cj , dj x + ej y + fj

)
.

Furthermore, a hyperbolic iterated function system is a collection of affine linear
transformations that are also contractions.
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The IFSs follow basic rules, as in the case of the chaos game used to generate
the Sierpiński triangle. The rules of the chaos game can be generalized to allow
greater freedom as follows:

Step 1. Create two or more affine linear transformations.

Step 2. Assign probabilities to each of the transformations.

Step 3. Start with an initial point.

Step 4. Select a random transformation to get a second point.

Step 5. Repeat the process.

An IFS consisting of four transformations was used to generate Figure 15.7.
This figure resembles a fern in nature and is known as Barnsley’s fern. A Maple
program is listed in Section 15.5.

Figure 15.7: [Maple] A fractal attractor of an IFS: Barnsley’s fern, generated using
60,000 points.

The affine linear transformations may be found by taking reflections, rota-
tions, scalings, and translations of triangles that represent the fronds of the fern.

15.2 Calculating Fractal Dimensions
Definition 3. A self-similar fractal has fractal dimension (or Hausdorff index) Df

given by

Df = ln N(l)

− ln l
,

where l represents a scaling and N(l) denotes the number of segments of length l.
Thus, the relationship

(15.1) N(l) ∝ (l)−Df
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is also valid. The number Df , which need not be an integer, gives a measure of
how the density of the fractal object varies with respect to length scale.

Definition 4. A fractal is an object that has noninteger fractal dimension. (This is
an alternative to Definition 1).

Example 1. Determine the fractal dimension of

(i) the Cantor set,

(ii) the Koch curve,

(iii) the Koch square,

(iv) the Sierpiński triangle.

Solutions.

(i) A construction of the Cantor set up to stage 3 is depicted in Figure 15.1.
At each stage, one segment is replaced with two segments that are 1

3 the
length of the previous segment. Thus, in this case, N(l) = 2 and l = 1

3 .
The mathematical self-similar Cantor set fractal constructed to infinity will,
therefore, have dimension given by

Df = ln 2

ln 3
≈ 0.6309.

Note that a point is defined to have dimension 0 and a line dimension 1.
Hence, the Cantor set is denser than a point but less dense than a line.

(ii) The Koch curve is constructed up to stage 5 in Figure 15.2. In this case, one
segment is replaced with four segments which are scaled by 1

3 ; therefore,
N(l) = 4 and l = 1

3 . The mathematical self-similar Koch fractal generated
to infinity will have dimension

Df = ln 4

ln 3
≈ 1.2619.

Thus, the Koch curve is denser than a line but less dense than a plane, which
is defined to have dimension 2.

(iii) The Koch square generated to stage 5 is shown in Figure 15.3. Note that this
object is not strictly self-similar; magnification will not reveal smaller Koch
squares. However, it is possible to define a fractal dimension, since there is
a scaling behavior. For the Koch square,

Df = ln 5

ln 3
≈ 1.4650.

Hence, the Koch square is denser than the Koch curve but is still less dense
than the plane. Note that the inverted Koch square will have exactly the same
fractal dimension.
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(iii) The mathematical Sierpiński triangle fractal (see Figure 15.6) may be con-
structed by removing the central triangle from equilateral triangles to infinity.
A motif is shown in Figure 15.8.

Figure 15.8: The motif used to generate the Sierpiński triangle.

It is important to note that the scaling l referred to in Definition 2 is linear.
Thus, the linear scale is 1

2 since the sides of the smaller triangles are half as long
as the sides of the original triangle in the motif. At each stage, one triangle is
replaced with three triangles, so l = 1

2 and N(l) = 3. The fractal dimension of the
mathematical Sierpiński triangle generated to infinity is

Df = ln 3

ln 2
≈ 1.5850.

The Sierpiński triangle has the highest dimension in Example 1, (i)–(iv), and
is therefore the most dense.

Box-Counting Dimensions. The fractal dimensions calculated so far have been
for hypothetical fractal objects that cannot exist in the real world. Mandelbrot [24]
showed how fractals appear throughout science and nature. Trees, clouds, rocks,
and the fractals generated in earlier chapters can display a certain type of scaling
and self-similarity. Mandelbrot showed that these objects obey a power law as
described in (15.1) over a certain range of scales. By covering the object with
boxes of varying sizes and counting the number of boxes that contain the object,
it is possible to estimate a so-called box-counting dimension, which is equivalent
to the fractal dimension. Mandelbrot defined the fractal dimension to be

Df = lim
l→0

ln N(l)

− ln l
,

where N(l) boxes of length l cover the fractal object. These boxes need not be
square.

Consider the following two examples.
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Example 2. The Koch curve is covered with boxes of varying scales, as shown in
Figure 15.9. Use a box-counting technique to show that the object obeys the power
law given in equation (15.1) and hence estimate the box-counting dimension.

Table 15.1 gives the box count N(l) for the different scalings l, and the natural
logs are calculated.

Table 15.1: Box-count data for the Koch curve generated to stage 6.

l 12−1 15−1 18−1 24−1 38−1 44−1

N(l) 14 24 28 34 60 83
− ln l 2.4849 2.7081 2.8904 3.1781 3.6376 3.7842
ln N(l) 2.6391 3.1781 3.3322 3.5264 4.0943 4.4188

Using the least-squares method of regression, the line of best fit on a log–
log plot is given by y ≈ 1.2246x − 0.2817, and the correlation coefficient is
approximately 0.9857. The line of best fit is shown in Figure 15.10.

Therefore, the box-counting dimension of the Koch curve generated to stage
6 is approximately 1.2246. There is obviously a scaling restriction with this object
since the smallest segment is of length 3−6 ≈ 0.0014 units and the box-counting
algorithm will break down as boxes approach this dimension. There is always some
kind of scaling restriction with physical images as there are a limited number of
pixels on a computer screen. It is interesting to note that the mathematical Koch
curve has a higher dimension of approximately 1.2619. This is to be expected as
true mathematical fractal is much denser.

Example 3. A chaotic attractor comprising 5000 points for the Hénon map

xn+1 = 1.2 + 0.4yn − x2
n, yn+1 = xn

is covered with boxes of varying scales, as shown in Figure 15.11. Use a box-
counting technique to show that the object obeys the power law given in (15.1) and
hence estimate the box-counting dimension.

Table 15.2 gives the box count N(l) for the different scalings l, and the natural
logs are calculated.

Table 15.2: Box-count data for the Hénon map with 5000 points

l 12−1 16−1 20−1 24−1 28−1 32−1

N(l) 47 58 76 93 109 131
− ln l 2.4849 2.7726 2.9957 3.1781 3.3322 3.4657
ln N(l) 3.8501 4.0604 4.3307 4.5326 4.6914 4.8752

Using the least-squares method of regression, the line of best fit on a log–
log plot is given by y ≈ 1.0562x + 1.1810, and the correlation coefficient is
approximately 0.9961. The line of best fit is shown in Figure 15.12.
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l = 1
12 l = 1

15

l = 1
18 l = 1

24

l = 1
38 l = 1

44

Figure 15.9: Different coarse coverings of the Koch curve generated to stage 6.
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Figure 15.10: The line of best fit on a log–log plot for the early-generation Koch
curve. The correlation coefficient is 0.9857.

Therefore, the box-counting dimension of the Hénon attractor with 5000
points is approximately 1.0562. There is a scaling restriction in this case, as there
are only 5000 data points. Once more, the dimension of the mathematical fractal
with an infinite number of data points will be larger.

The Hénon map is not self-similar and is, in fact, a multifractal. See the next
section.

15.3 A Multifractal Formalism
In the previous section, it was shown that a fractal object can be characterized
by its fractal dimension Df , which gives a measure of how the density varies
with respect to length scale. Most of the fractals appearing earlier in this chapter
can be constructed to the infinite stage in the minds of mathematicians. They are
homogeneous since the fractals consist of a geometrical figure repeated on an ever-
reduced scale. For these objects, the fractal dimension is the same on all scales.
Unfortunately, in the real world, fractals are not homogeneous; there is rarely an
identical motif repeated on all scales. Two objects might have the same fractal
dimension and yet look completely different. It has been found that real-world
fractals are heterogeneous; that is, there is a nonuniformity possessing rich scaling
and self-similarity properties that can change from point to point. Put plainly, the
object can have different dimensions at different scales. It should also be pointed
out that there is always some kind of scaling restriction with physical fractals.
These more complicated objects are known as multifractals, and it is necessary to
define continuous spectra of dimensions to classify them.

There are many different ways in which a mathematician can define dimen-
sion, and the subject can become very complicated and abstract. For example,
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32

Figure 15.11: Different coarse coverings of the Hénon chaotic attractor.



15.3. A Multifractal Formalism 351

2

3

4

5

6

ln(N(l))

0 1 2 3 4 5
–ln(l)

Figure 15.12: The line of best fit on a log–log plot for the early-generation Hénon
attractor. The correlation coefficient is 0.9961.

there is Hausdorff dimension, topological dimension, Euclidean dimension, and
box-counting dimension to name but a few. More details on the pure mathematical
approach to multifractals are presented in references [6] and [18]. The most widely
used method of determining multifractal spectra is that of Falconer [6], which is
described briefly below.

Let µ be a self-similar probability measure defined on an object S ⊂ �d ,
where µ(B) is a probability measure determined from the probability of hitting the
object in the box Bi(l) and N ∝ 1

l2
is the number of boxes in the grid. The gener-

alized fractal dimensions Dq or, alternatively, the f (α) spectrum of singularities
may be computed using box-counting techniques. First, consider the generalized
fractal dimensions. Cover the object S with a grid of boxes (Bi(l))

N
i=1 of size l, as

in Section 15.1. The qth moment (or partition function) Zq is defined by

(15.2) Zq (l) =
∑

µ(B)
=0

[µ(B)]q =
N∑

i=1

p
q
i (l).

For self-similar multifractals, given a real number q, τ(q) may be defined as
the positive number satisfying

(15.3)
N∑

i=1

p
q
i r

τ(q)
i = 1,

where pi represent probabilities (
∑N

i=1 pi = 1) with ri fragmentation ratios. The
function τ : � → � is a decreasing real analytic function with

lim
q→−∞ τ(q) = ∞ and lim

q→∞ τ(q) = −∞.
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The generalized dimensions Dq and the scaling function τ(q) are defined by

(15.4) τ(q) = Dq(1 − q) = lim
l→0

ln Zq(l)

− ln l
.

The generalized dimensions are obtained from an assumed power-law behavior of
the partition function in the limit as l → 0 and N → ∞,

Zq ∝ lDq(q−1).

Definition 5. The generalized (box-counting) fractal dimensionsDq , whereq ∈ �,
are defined by

(15.5) Dq = lim
l→0

1

1 − q

ln
∑N

i=1 p
q
i (l)

− ln l
,

where the index i labels the individual boxes of size l and pi(l) denotes the relative
weight of the ith box or the probability of the object lying in the box. Hence,

pi(l) = Ni(l)

N
,

where Ni(l) is the weight of the ith box and N is the total weight of the object.
When q = 0,

D0 = Df = lim
l→0

ln N(l)

− ln(l)
,

where N(l) is the number of boxes contained in the minimal cover. When q = 1,
L’Hopital’s Rule can be applied (see the exercises in Section 15.6) to give

D1 = lim
l→0

∑N
i=1 pi ln(pi)

− ln(l)
,

which is known as the information dimension. This gives an indication of how
the morphology increases as l → 0. The quantity D2 is known as the correlation
dimension and indicates the correlation between pairs of points in each box. The
generalized dimensions D3, D4, . . . are associated with correlations among triples,
quadruples, etc., of points in each box.

Now consider the so-called f (α) spectrum of dimensions. The weight ps of
segments of type s scales with the size l of a box as follows:

ps(l) ∝ (l)αs ,

where αs is the so-called coarse Hölder exponent defined by

αs = ln ps(l)

ln l
.
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The number of segments Ns of type s scales with the size l of a box according to

Ns(l) ∝ (l)−fs .

The exponents αs and fs can then be used to determine f (α), as demonstrated in
the examples in the next section.

In many cases, f (α) = dimH Sα is related to the Hausdorff–Besicovich
dimension of the set x ∈ S; see reference [6] for more information. In most cases,
a multifractal spectrum f (α) may be obtained from τ(q) by a so-called Legendre
transformation, which is described here briefly for completeness. Hence,

f (α) = inf−∞<q<∞ (τ (q) + αq) .

The f (α) can be derived from τ(q), and vice versa, by the identities

(15.6) f (α(q)) = qα(q) + τ(q) and α = −∂τ

∂q
.

It is known that the function f (α) is strictly cap convex (see Figure 15.13(c)) and
that α(q) is a decreasing function of q.

In practice, to compute τ(q) using the partition function, the following three
steps are required:

• Cover the object with boxes (Bi(l))
N
i=1 of size l and compute the correspond-

ing box-measures µi = µ (Bi(l)) = pi(l).

• Compute the partition function Zq for various values of l.

• Check that the log–log plots for Zq against l are straight lines. If so, then
τ(q) is the slope of the line corresponding to the exponent q.

In summary, τ(q) and Dq can be obtained from (15.2) and (15.4), and the
f (α) values can be determined as above or computed (see [21]) using the expres-
sions

(15.7) f (q) = lim
l→0

∑N
i=1 µi(q, l) ln µi(q, l)

ln l

and

(15.8) α(q) = lim
l→0

∑N
i=1 µi(q, l) ln pi(l)

ln l
,

where µi(q, l) are the normalized probabilities

µi(q, l) = p
q
i (l)∑N

j=1 p
q
j (l)

.
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In physical applications, an image on a computer screen of 512 × 512 pixels is
typically used. A problem arises with negative values of q; boxes with very low
measure may contribute disproportionately. Several papers have been published
addressing this clipping problem; see reference [8], for example. This is not a
problem with some of the physical applications discussed here since most of the
useful results are obtained for 0 ≤ q ≤ 5.

The multifractal functions τ(q), Dq , and f (α) have typical forms for self-
similar measures. For example, consider f : [αmin, αmax] → �; then −αmin and
−αmax are the slopes of the asymptotes of the strictly convex function τ . The ge-
ometry of the Legendre transform determines that f is continuous on [αmin, αmax]
and f (αmin) = f (αmax) = 0. It is not difficult to show that τ(0) = D0 and
that q = 0 corresponds to the maximum of f (α). When q = 1, τ(q) = 0, and
so f (α) = α. Moreover, d

dα
(f (α) − α)) = q − 1 = 0. Thus f (α) is tangent to

f (α) = α at q = 1.
Typical τ(q), Dq , and f (α) curves and some of their properties are shown

in Figure 15.13. Note that in Figure 15.13(a), the line asymptotic to the curve as

1

0

q

τ(
q)

0
0

q

D
q

(a) (b)

(α)

q=1

αmin max

q=0

f

α
α

(c)

Figure 15.13: Typical curves of (a) the τ(q) function, (b) the Dq spectrum, and (c)
the f (α) spectrum. In case (c), points on the curve near αmin correspond to values
of q → ∞ and points on the curve near αmax correspond to values of q → −∞.
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q → ∞ has slope −αmin and the line asymptotic to the curve as q → −∞ has
slope −αmax.

There are major limitations associated with this so-called fixed-size box-
counting algorithm, and in many applications, results are only reliable for a narrow
range of q values, typically 0 ≤ q ≤ 5. In reference [14], Mach et al. also consid-
ered a fixed-weight box-counting algorithm, where the measure quantities pi are
fixed and the size factors ri vary; see (15.3). They show that the fixed-size box-
counting algorithm gives good results for small positive q and the fixed-weight
box-counting algorithm can be used to give good results for small negative q.
Recently, Alber and Peinke [8] developed an improved multifractal box-counting
algorithm using so-called fuzzy disks and a symmetric scaling-error compensation.
They apply their method to the Hénon map with great success.

Some simple multifractals are constructed in the next section, and a multi-
fractal analysis is applied to determine multifractal spectra.

15.4 Multifractals in the Real World and Some Simple
Examples

Since the publication of the seminal paper by Halsey et al. [23] on multifractals,
there has been intense research activity, and numerous papers have been published
in many diverse fields of science. A small selection of this research material will be
discussed in order to demonstrate how the analysis is being applied in the physical
world.

In 1989, Chhabra et al. [21] used (15.7) and (15.8) to determine the f (α)

spectrum for fully developed turbulence in laboratory and atmospheric flows di-
rectly from experimental data. The same methods were employed by Blacher et al.
[17] in 1993 and Mills et al. [4, 5] when characterizing the morphology of multi-
component polymer systems. They found that there was a correlation between the
mechanical properties of the samples and their respective f (α) curves. There have
been many other studies into the mechanical properties of plastics and rubbers using
image analysis techniques. A very useful tool is the multifractal analysis of density
distributions. The analysis is usually applied to elemental dot maps produced by
scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.
The analysis is used to produce generalized dimensions, and it has been found that
w = D0 − D5 is related to factors such as tensile strength, elongation at break,
and energy to break. The quantity w is a measure of the nonuniformity of the
structure. The smaller the value of w, the more homogeneous the structure and
the stronger the material. Multifractals are being applied in image compression
techniques and signal processing. Sarkar and Chaudhuri [16] estimated fractal and
multifractal dimensions of gray-tone digital images, and Calvet and Fisher used a
multifractal approach to extract relevant information on textural areas in satellite
meteorological images. Generalized dimensions are being applied extensively in
the geosciences to classify sedimentary rocks. Muller et al. [15] relate porosity and
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permeability to the multifractal spectra of the relevant samples. The analysis is also
often applied to diffusion-limited aggregates (DLA) clusters. For example, Mach et
al. [14] consider the electrodeposition of zinc sulfate on an electrode and apply the
fixed-size and fixed-weight box algorithms to obtain the generalized dimensions.
Multifractal characteristics are displayed by propagating cracks in brittle materi-
als, as reported by Silberschmidt [12]. In physics, the box-counting method was
applied to show the multifractality of secondary-electron emission sites in silicon
[11]. In economics, Calvet and Fisher [1] provided a unified treatment on the use
of multifractal techniques in finance.

Other examples of multifractal phenomena can be found in, for example,
stock market analysis, rainfall, and even the distribution of stars and galaxies in
the universe. Multifractal phenomena in chemistry and physics are presented in
reference [22]. The examples listed above are by no means exhaustive, but the
author hopes that the reader will be encouraged to look for more examples in his
or her own particular field of specialization.

In the following examples, simple multifractals are constructed using nonuni-
form generalizations of the Cantor set and the Koch curve. Multifractal spectra
curves are plotted in both cases.

Example 4. A Cantor multifractal set is constructed by removing the middle third
segment at each stage and distributing a weight so that each of the remaining two
segments receive a fraction p1 and p2 units, respectively, and such that p1+p2 = 1.
Illustrate how the weight is distributed after the first two stages of construction.
Plot τ(q) curves, Dq spectra, and f (α) spectra when

(i) p1 = 1
3 and p2 = 2

3 ,

(ii) p1 = 1
9 and p2 = 8

9 .

Which of the multifractals is more heterogeneous?

Solution. Figure 15.14 illustrates how the weight is distributed up to the second
stage of construction.

= 1Stage 0

Stage 1

Stage 2

p1 p

p 1p2p2p1

2

0

2
2p2

1p

p

Figure 15.14: The weight distribution on a Cantor multifractal set up to stage 2.

At stage k, each segment is of length ( 1
3 )k and there are N = 2k segments.

Assign a unit weight to the original line. Then, for k = 1, one line segment has
weight p1 and the other has weight p2. For k = 2, there are four segments: one
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with weight p2
1, two with weight p1p2, and one with weight p2

2. At stage 3, there
are eight segments: one with weight p3

1, three with weight p2
1p2, three with weight

p1p
2
2, and one with weight p3

2. It is not difficult to see that at stage k, there will be

Ns(l) =
(

k

s

)

segments of weight ps
1p

k−s
2 . From (15.2), the partition function Zq(l) is given by

Zq(3−k) =
k∑

s=0

(
k

s

)
p

qs
1 p

q(k−s)
2 = (p

q
1 + p

q
2 )k,

from the binomial theorem. Therefore, from (15.4),

τ(q) = Dq(1 − q) = lim
l→0

ln(p
q
1 + p

q
2 )k

− ln 3−k
,

so

τ(q) = ln(p
q
1 + p

q
2 )

ln 3
.

The Dq spectrum can be plotted using continuity at q = 1.
To construct an f (α) spectrum, consider how the weight ps and the number

of segments Ns each of type s, scales with segment size l. Now

ps(l) ∝ (l)αs and Ns(l) ∝ (l)−fs ,

where s = 0, 1, . . . , k. Now ps = ps
1p

k−s
2 and l = 3−k . Hence,

αs = s ln p1 + (k − s) ln p2

ln 3−k
.

The number of segments of weight ps at the kth stage is

Ns =
(

k

s

)
.

Hence,

−fs = ln
(

k
s

)
ln 3−k

.

These parametric curves may be plotted to produce f (α) using the Maple package.
The programs are listed in the next section.

(i) Suppose that p1 = 1
3 and p2 = 2

3 . The multifractal curves are given in
Figure 15.15.

(ii) Suppose that p1 = 1
9 and p2 = 8

9 . The multifractal curves are given in
Figure 15.16.
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Figure 15.15: Multifractal spectra for part (i) of Example 1 when p1 = 1/3 and
p2 = 2/3: (a) τ(q) curve, (b) Dq spectrum, and (c) f (α) spectrum when k = 500.

Notice that, in all cases, D0 = Df = ln 2
ln 3 ≈ 0.63. The multifractal in case (ii)

is more heterogeneous. The f (α) curve is broader and the generalized dimensions
Dq cover a wider range of values.

The following images and plots have been supplied by one of the author’s
Ph.D. students, Dr. Steve Mills, working for BICC cables in Wrexham, for which
the author is very grateful. This work is beyond the scope of the book, but the results
are included as a matter of interest. Note that these are early-generation fractals and
that the results have been obtained using powerful computers and image-analysis
techniques.

Example 5. Consider the image in Figure 15.17(a), produced by applying the
weight distribution as indicated. Using the computer algorithms described in var-
ious papers, it is possible to compute the Dq and f (α) spectra. The theoretical
multifractal spectra may be derived analytically using methods similar to those
used in references [9].
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Figure 15.16: [Maple] Multifractal spectra for part (ii) of Example 1 when p1 =
1/9 and p2 = 8/9: (a) τ(q) curve, (b) Dq spectrum, and (c) f (α) spectrum when
k = 500.

Solution. The computed multifractal spectra are plotted in Figure 15.18. For the
motif displayed in Figure 15.17(b), it is not difficult to show that

τ =
ln
(

1
3
q + 1

4
q + 1

4
q + 1

6
q
)

ln(2)
,

and then the theoretical f (α) spectrum can be plotted using the relations

α = −dτ

dq
, f = qα + τ.

This is left as an exercise for the reader.

Example 6. Consider the image in Figure 15.17(c), produced by applying the
weight distribution as indicated. Using the computer algorithms described in vari-
ous papers, it is possible to compute the Dq and f (α) spectra.
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(a) (b)

(c) (d)

Figure 15.17: Multifractal images and the weight distribution motifs. The weights
are related to the gray scale; for example, p1 = 1 would be white and p1 = 0
would be black on this scale.

Solution. The computed multifractal spectra are plotted in Figure 5.19.

The plots in Figures 5.18 and 5.19 are typical of those displayed in the research
literature. Note that the latter image is more nonuniformly distributed and is a more
heterogeneous fractal.

The quantity w = D0 − D5 may be used to measure dispersion. Thus, for
Example 5, w ≈ 0.13, and for Example 6, w ≈ 0.6. Therefore, the dispersion is
better in Example 5 since the fractal is more homogeneous.

As a final example, consider the image in Figure 15.20(a); the image was
generated by Dr. Kathryn Whitehead from the School of Biological Sciences at
Manchester Metropolitan University. The image was generated using a scanning
electron microscope (SEM) and is the image of microbes distributed on a food
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Figure 15.18: Plots for Example 5: (a) the Dq spectrum when −5 ≤ q ≤ 5 and
(b) the f (α) spectrum.

surface. Figure 15.20(b) was obtained using simple image-analysis techniques and
is a black-and-white version of Figure 15.20(a). A multifractal analysis has been
carried out to generate the f (α) curve shown in Figure 15.21. Measurements for
microbial density and distribution can be read from the f (α) curve. Research
results will be published in a biological journal within the next few years.

Mulitifractal generalized Sierpiński triangles are considered in reference [9],
and a multifractal spectrum of the Hénon map is discussed in reference [8].

15.5 Maple Commands

> # Program 15a: Plotting fractals.

> # Figure 15.2: The Koch curve.

> restart:with(plots):

segmnt:=array(0..100000):

x:=array(0..100000):y:=array(0..100000):

k:=6: # Construction up to stage k.

mmax:=4ˆk:

h:=3ˆ(-k):

x[0]:=0:y[0]:=0: # Initial point.

angle(0):=0:angle(1):=Pi/3:

angle(2):=-Pi/3:angle(3):=0: # Angles of the 4 segments.

for i from 0 to mmax do
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Figure 15.19: Plots for Example 6: (a) the Dq spectrum when −5 ≤ q ≤ 5 and
(b) the f (α) spectrum.

(a) (b)

Figure 15.20: Microbial distribution on a food surface: (a) SEM image and (b) a
black-and-white version of (a) obtained from a simple image analysis.

m:=i:ang:=0:

for j from 0 to k-1 do

segmnt[j]:=m mod 4: # Work with numbers modulo 4.

m:=iquo(m,4):

ang:=ang+angle(segmnt[j]):end do:

x[i+1]:=evalf(x[i]+h*cos(ang)): # Define the (i+1)’st segment.
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Figure 15.21: The f (α) spectrum for Figure 15.20(b).

y[i+1]:=evalf(y[i]+h*sin(ang)):end do:

j:=’j’:

pts:=[[x[j],y[j]] $j=0..mmax]:

plot(pts,color=blue,axes=NONE,scaling=CONSTRAINED);

> # Program 15b: Fractal.

> # Figure 15.3: The Koch square.

> segmnt:=array(0..100000):

x:=array(0..100000):y:=array(0..100000):

k:=6:mmax:=5ˆk: # Each segment is replaced with 5 segments.

h:=3ˆ(-k):

x[0]:=0:y[0]:=0:

angle(0):=0:angle(1):=Pi/2:angle(2):=0:

angle(3):=-Pi/2:angle(4):=0: # Angles of the 5 segments.

for i from 0 to mmax do

m:=i:ang:=0:

for j from 0 to k-1 do

segmnt[j]:=m mod 5:

m:=iquo(m,5):

ang:=ang+angle(segmnt[j]):end do:

x[i+1]:=evalf(x[i]+h*cos(ang)):y[i+1]:=evalf(y[i]+h*sin(ang)):

end do:

i:=’i’:j:=’j’:k:=’k’:l:=’l’: # Rotate and translate to get 4 edges.

pts1:=[[x[i],-y[i]] $i=0..mmax]:pts2:=[[x[j],y[j]+1] $j=0..mmax]:

pts3:=[[x[k]*cos(-Pi/2)+y[k]*sin(-Pi/2),-x[k]*sin(-Pi/2)+

y[k]*cos(-Pi/2)] $k=0..mmax]:

pts4:=[[-(x[k]*cos(-Pi/2)+y[k]*sin(-Pi/2))+1,-x[k]*sin(-Pi/2)+

y[k]*cos(-Pi/2)] $k=0..mmax]:
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p1:=plot(pts1,color=black,axes=NONE):p2:=plot(pts2,color=black,

axes=NONE):

p3:=plot(pts3,color=black,axes=NONE):p4:=plot(pts4,color=black,

axes=NONE):

display({p1,p2,p3,p4},scaling=CONSTRAINED,axes=NONE,

title=‘The Koch Square‘);

> # Program 15c: Fractal.

> # Figure 15.6: the Sierpinski triangle.

> x:=array(0..100000):

A:=[0,0]:B:=[4,0]:C:=[2,2*sqrt(3)]: # The vertices.

x[0]:=[2,1]: # An initial point.

mmax:=10000:scale:=1/2:

for i from 0 to mmax do

die:=RandomTools[Generate](integer(range=1..6));

die();

if die() < 3 then

x[i+1]:=evalf(x[i]+(B-x[i])*scale):

elif die() < 5 then

x[i+1]:=evalf(x[i]+(C-x[i])*scale):

else

x[i+1]:=evalf(x[i]+(A-x[i])*scale):end if:end do:

m:=’m’:pts:=[[x[m]] $m=10..mmax]:

plot(pts,style=point,symbol=circle,symbolsize=1,color=red,

axes=NONE);

> # Program 15d: Fractal.

> # Figure 15.7: Barnsley’s fern.

> restart;

Nmax:=50000:PP:=array(0..1000000):PP[0]:=[0.5,0.5]:

T:=proc(a,b,c,x,y):a*x+b*y+c:end:

die:=rand(1..100):

for j from 0 to Nmax do

r:=die():

if r<5 then PP[j+1]:=[T(0,0,0,op(1,PP[j]),op(2,PP[j])),

T(0,0.2,0,op(1,PP[j]),op(2,PP[j]))]:

elif r<86 then PP[j+1]:=[T(0.85,0.05,0,op(1,PP[j]),op(2,PP[j])),

T(-0.04,0.85,1.6,op(1,PP[j]),op(2,PP[j]))]:

elif r<93 then PP[j+1]:=[T(0.2,-0.26,0,op(1,PP[j]),op(2,PP[j])),

T(0.23,0.22,1.6,op(1,PP[j]),op(2,PP[j]))]:

else PP[j+1]:=[T(-0.15,0.28,0,op(1,PP[j]),op(2,PP[j])),

T(0.26,0.24,0.44,op(1,PP[j]),op(2,PP[j]))]:end if:end do:

pts:=[PP[n]$n=1..Nmax]:

with(plots):

plot(pts,style=point,symbol=circle,symbolsize=1,color=green,

axes=NONE);
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> # Program 15e: Grid generation for box counting.

> hor:=array(0..10000):vert:=array(0..10000):

plothor:=array(0..10000):plotvert:=array(0..10000):

l:=1/5: # l is the box-length.

xmin:=-2:xmax:=2:ymin:=-2:ymax:=2:

xrange:=(xmax-xmin):

n:=xrange*(1/l):

for i from 0 to n do

hor[i]:=[[xmin,ymin+i*l],[xmax,ymin+i*l]]:

vert[i]:=[[xmin+i*l,ymin],[xmin+i*l,ymax]]:

plothor[i]:=plot(hor[i],axes=NONE,color=black):

plotvert[i]:=plot(vert[i],axes=NONE,color=black):end do:

display({plothor[m],plotvert[m]} $m=0..n,scaling=CONSTRAINED);

> # Program 15f: Multifractal spectra.

> # Figure 15.15: (a), (b), and (c).

> # The tau curve.

p1:=1/3:p2:=2/3:tau:=(ln(p1ˆx+p2ˆx))/(ln(3)):

plot(tau,x=-5..5,labels=[‘q‘,‘tau(q)‘]);

> # The Dq curve.

> Dq1:=(tau/(1-x)):D1:=plot(Dq1,x=-20..0.9999):

D2:=plot(Dq1,x=1.0001..20):

display({D1,D2},axes=BOXED,labels=[‘q‘,‘Dq‘]);

> # The f-alpha spectrum.

> k:=500:p1:=1/3:p2:=2/3:

plot([(t*ln(p1)+(k-t)*ln(p2))/(k*ln(1/3)),

-(ln(binomial(k,t)))/(k*ln(1/3)),

t=0..500],labels=[‘alpha‘,‘f(alpha)‘]);

15.6 Exercises
1. (a) Consider the unit interval.A variation of the Cantor set is constructed by

removing two line segments each of length 1
5 . Thus, at stage 1, remove

the segments between { 1
5 .. 2

5 } and { 3
5 .. 4

5 } from the unit interval, leaving
three line segments remaining. Continuing in this way, construct the
fractal up to stage 3 either on graph paper or on a computer screen.
Find the length of segment remaining at stage k. Determine the fractal
dimension of the mathematical fractal constructed to infinity.

(b) A Lévy fractal is constructed by replacing a line segment with a try
square. Thus, at each stage one line segment of length, 1, say, is replaced
by two of length 1√

2
. Construct the fractal up to stage 7 either on graph

paper or on a computer screen. When using graph paper, it is best to
draw a skeleton (dotted line) of the previous stage. What is the true
fractal dimension of the object generated to infinity?



366 15. Fractals and Multifractals

(c) A Koch snowflake is constructed by adjoining the Kock curve to the
outer edges of a unit length equilateral triangle. Construct this fractal
up to stage 4 either on graph paper or on a computer screen and show
that the area bounded by the true fractal A∞ is equal to

A∞ = 2
√

3

5
units2.

(d) The inverted Koch snowflake is constructed in the same way as in
Exercise 1(c), but the Koch curve is adjoined to the inner edges of an
equilateral triangle. Construct the fractal up to stage 4 on graph paper
or stage 6 on the computer.

2. Consider Pascal’s triangle given below

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 x0 x1 x1 x0 715 286 78 13 1

1 14 91 364 x2 x3 x4 x5 x4 x3 x2 364 91 14 1

1 15 105 455 x6 x7 x8 x9 x9 x8 x7 x6 455 105 15 1
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where x0 = 1287, x1 = 1716, x2 = 1001, x3 = 2002, x4 = 3003,
x5 = 3432, x6 = 1365, x7 = 3003, x8 = 5005, and x9 = 6435. Cover the
odd numbers with small black disks (or shade the numbers). What do you
notice about the pattern obtained?

3. The Sierpiński triangle can be constructed by removing the central inverted
equilateral triangle from an upright triangle; a motif is given in this chapter.
Construct the Sierpiński triangle up to stage 4 on graph paper using this
method.

4. A Sierpiński square is constructed by removing a central square at each stage.
Construct this fractal up to stage 3 and determine the fractal dimension of
the theoretical object generated to infinity.

5. Use the box-counting algorithm to approximate the fractal dimension of
Barnsley’s fern. The Maple program for plotting the fern is given in Section
15.5.

6. Prove that

D1 = lim
l→0

∑N
i=1 pi ln(pi)

− ln(l)
,

by applying L’Hopital’s rule to (15.5).

7. Plot τ(q) curves and Dq and f (α) spectra for the multifractal Cantor set
described in Example 1 when (i) p1 = 1

2 and p2 = 1
2 , (ii) p1 = 1

4 and
p2 = 3

4 , and (iii) p1 = 2
5 and p2 = 3

5 .

8. A multifractal Koch curve is constructed and the weight is distributed as
depicted in Figure 15.22. Plot the f (α) spectrum when p1 = 1

3 and p2 = 1
6 .

p p1

p2

2
p1

Figure 15.22: The motif used to construct the Koch curve multifractal, where
2p1 + 2p2 = 1.

9. A multifractal square Koch curve is constructed and a weight is distributed
as depicted in Figure 15.23. Plot the τ(q) curve and the Dq and f (α) spectra
when p1 = 1

9 and p2 = 1
3 .

10. A multifractal Koch curve is constructed and a weight is distributed as de-
picted in Figure 15.24, where p1 +p2 +p3 +p4 = 1. Determine αs and fs .
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p p

p

p1

2

1

2
p1

Figure 15.23: The motif used to construct the Koch curve multifractal, where
3p1 + 2p2 = 1.

p p

p
3

4

2
p1

Figure 15.24: The motif used to construct the Koch curve multifractal, where
p1 + p2 + p3 + p4 = 1.
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16
Chaos Control and Synchronization

Aims and Objectives
• To provide a brief historical introduction to chaos control and synchroniza-

tion.

• To introduce two methods of chaos control for one- and two-dimensional
discrete maps.

• To introduce two methods of chaos synchronization.

On completion of this chapter, the reader should be able to

• control chaos in the logistic and Hénon maps;

• plot time series data to illustrate the control;

• synchronize chaotic systems;

• appreciate how chaos control and synchronization are being applied in the
real world.

This chapter is intended to give the reader a brief introduction into the new and
exciting field of chaos control and synchronization and to show how some of the
theory is being applied to physical systems. There has been considerable research
effort into chaos control in recent times, and practical methods have been applied
in, for example, biochemistry, cardiology, communications, physics laboratories,
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and turbulence. Chaos control has been achieved using many different methods,
but this chapter will concentrate on two procedures only. Chaos synchronization
has applications in analog or digital communications and cryptography.

Control and synchronization of chaotic systems is possible for both discrete
and continuous systems. Analysis of chaos control will be restricted to discrete
systems in this chapter and synchronization will be restricted to continuous systems.

16.1 Historical Background
Even simple, well-defined discrete and continuous nonlinear dynamical systems
without random terms can display highly complex, seemingly random behavior.
Some of these systems have been investigated in this book, and mathematicians
have labeled this phenomenon deterministic chaos. Nondeterministic chaos, where
the underlying equations are not known, such as that observed in a lottery or on
a roulette wheel, will not be discussed in this text. Throughout history, dynamical
systems have been used to model both the natural and technological sciences. In
the early years of investigations, deterministic chaos was nearly always attributed
to random external influences and was designed out if possible. The French math-
ematician and philosopher Henri Poincaré laid down the foundations of the qual-
itative theory of dynamical systems at the turn of the century and is regarded by
many as being the first chaologist. Poincaré devoted much of his life attempting
to determine whether the solar system is stable. Despite knowing the exact form
of the equations defining the motions of just three celestial bodies, he could not
always predict the long-term future of the system. In fact, it was Poincaré who
first introduced the notion of sensitivity to initial conditions and long-term unpre-
dictability.

In recent years, deterministic chaos has been observed when applying simple
models to cardiology, chemical reactions, electronic circuits, laser technology,
population dynamics, turbulence, and weather forecasting. In the past, scientists
have attempted to remove the chaos when applying the theory to physical models,
and it is only in the last 20 years that they have come to realize the potential uses for
systems displaying chaotic phenomena. For some systems, scientists are replacing
the maxim “stability good, chaos bad” with “stability good, chaos better.” It has
been found that the existence of chaotic behavior may even be desirable for certain
systems.

Since the publication of the seminal paper of Ott et al. [27] in 1990, there has
been a great deal of progress in the development of techniques for the control of
chaotic phenomena. Basic methods of controlling chaos along with several reprints
of fundamental contributions to this topic may be found in the excellent textbook
of Kapitaniak [18]. Some of these methods will now be discussed very briefly, and
then a selection of early applications of chaos control in the real world will be
listed.
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I. Changing the systems parameters. The simplest way to suppress chaos is to
change the system parameters in such a way as to produce the desired result.
In this respect, bifurcation diagrams can be used to determine the parame-
ter values. For example, in Chapter 14, bifurcation diagrams were used to
determine regions of bistability for nonlinear bistable optical resonators. It
was found that isolated bistable regions existed for only a narrow range of
parameter values. However, the major drawback with this procedure is that
large parameter variations may be required, which could mean redesigning
the apparatus and changing the dimensions of the physical system. In many
practical situations, such changes are highly undesirable.

II. Applying a damper. A common method for suppressing chaotic oscillations
is to apply some kind of damper to the system. In mechanical systems, this
would be a shock absorber, and for electronic systems, one might use a shunt
capacitor. Once more, this method would mean a large change to the physical
system and might not be practical.

III. Pyragas’s method. This method can be divided into two feedback controlling
mechanisms: linear feedback control and time-delay feedback control. In
the first case, a periodic external force is applied whose period is equal to
the period of one of the unstable periodic orbits contained in the chaotic
attractor. In the second case, self-controlling delayed feedback is used in a
similar manner. This method has been very successful in controlling chaos
in electronic circuits such as the Duffing system and Chua’s circuit. A simple
linear feedback method has been applied to the logistic map in Section 16.2.

IV. Stabilizing unstable periodic orbits (the Ott, Grebogi, and Yorke (OGY)
method). The method relies on the fact that the chaotic attractors contain an
infinite number of unstable periodic orbits. By making small time-dependent
perturbations to a control parameter of the system, it is possible to stabilize
one or more of the unstable periodic orbits. The method has been very suc-
cessful in applications, but there are some drawbacks. This method will be
discussed in some detail at the end of this section.

V. Occasional proportional feedback (OPF). Developed by Hunt [22] in 1991,
this is one of the most promising control techniques for real applications. It
is a one-dimensional version of the OGY method and has been successful
in suppressing chaos for many physical systems. The feedback consists of
a series of kicks, whose amplitude is determined from the difference of the
chaotic output signal from a relaxation oscillation embedded in the signal,
applied to the input signal at periodic intervals.

VI. Synchronization. The possibility of synchronization of two chaotic systems
was first proposed by Pecorra and Carroll [26] in 1990 with applications
in communications. By feeding the output from one chaotic oscillator (the
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transmitter) into another chaotic oscillator (the receiver), they were able
to synchronize certain chaotic systems for certain parameter choices. The
method opens up the possibilities for secure information transmission. More
historical information and examples of chaos synchronization are presented
in Section 16.4.

Before summarizing the OGY method, it is worthwhile to highlight some of
the other major results not mentioned above. The first experimental suppression
of chaos was performed by Ditto et al. [24] using the OGY algorithm. By mak-
ing small adjustments to the amplitude of an external magnetic field, they were
able to stabilize a gravitationally buckled magnetostrictive ribbon that oscillated
chaotically in a magnetic field. They produced period-one and period-two behav-
ior, and the procedure proved to be remarkably robust. Using both experimental
and theoretical results, Singer et al. [23] applied a simple on–off strategy in order
to laminarize (suppress) chaotic flow of a fluid in a thermal convection loop. The
on–off controller was applied to the Lorenz equations, and the numerical results
were in good agreement with the experimental results. Shortly afterward, Hunt [22]
applied a modified version of the OGY algorithm called occasional proportional
feedback (OPF) to the chaotic dynamics of a nonlinear diode resonator. Small per-
turbations were used to stabilize orbits of low period, but larger perturbations were
required to stabilize orbits of high periods. By changing the level, width, and gain
of the feedback signal, Hunt was able to stabilize orbits with periods as high as 23.
Using the OPF algorithm developed by Hunt, Roy et al. [21] were able to stabilize
a weakly chaotic green laser. In recent years, the implementation of the control
algorithm has been carried out electronically using either digital signals or analog
hardware. The hope for the future is that all-optical processors and feedback can
be used in order to increase speed. The first experimental control in a biological
system was performed by Garfinkel et al. [20] in 1992. They were able to stabilize
arrhythmic behavior in eight out of eleven rabbit hearts using a feedback-control
mechanism. It has been reported in reference [14] that a company has been set up to
manufacture small defibrillators that can monitor the heart and deliver tiny electri-
cal pulses to move the heart away from fibrillation and back to normality. It was also
conjectured in the same article that the chaotic heart is healthier than a regularly
beating periodic heart. The OGY algorithm was implemented theoretically by the
author and Steele [13] to control the chaos within a hysteresis cycle of a nonlinear
bistable optical resonator using the real and imaginary parts of the electrical field
amplitude. The same authors have recently managed to control the chaos using
feedback of the electric field. This quantity is easy to continuously monitor and
measure and could lead to physical applications in the future. A simple example is
presented in Section 18.5.

Methods I–VI and results given above are by no means exhaustive. This
section is intended to provide a brief introduction to the subject and to encourage
further reading.
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The OGY Method. Following the paper of Ott et al. [27], consider the n-dimen-
sional map

(16.1) Zn+1 = f(Zn, p),

where p is some accessible system parameter that can be changed in a small
neighborhood of its nominal value, say, p0. In the case of continuous-time systems,
such a map can be constructed by introducing a transversal surface of section and
setting up a Poincaré map.

It is well known that a chaotic attractor is densely filled with unstable periodic
orbits and that ergodicity guarantees that any small region on the chaotic attractor
will be visited by a chaotic orbit. The OGY method hinges on the existence of
stable manifolds around unstable periodic points. The basic idea is to make small
time-dependent linear perturbations to the control parameter p in order to nudge
the state toward the stable manifold of the desired fixed point. Note that this can
only be achieved if the orbit is in a small neighborhood, or control region, of the
fixed point.

Suppose that ZS(p) is an unstable fixed point of (16.1). The position of this
fixed point moves smoothly as the parameter p is varied. For values of p close to
p0 in a small neighborhood of ZS(p0), the map can be approximated by a linear
map given by

(16.2) Zn+1 − ZS(p0) = J(Zn − ZS(p0)) + C(p − p0),

where J is the Jacobian and C = ∂f
∂p

. All partial derivatives are evaluated at ZS(p0)

and p0.
Assume that in a small neighborhood around the fixed point,

(16.3) p − p0 = −K(Zn − ZS(p0)),

where K is a constant vector of dimension n to be determined. Substitute (16.3)
into (16.2) to obtain

(16.4) Zn+1 − ZS(p0) = (J − CK)(Zn − ZS(p0)).

The fixed point is then stable as long as the eigenvalues, or regulator poles,
have modulus less than unity. The pole-placement technique from control theory
can be applied to find the vector K. A specific example is given in Section 16.3.

A simple schematic diagram is given in Figure 16.1 to demonstrate the action
of the OGY algorithm. Physically, one can think of a marble placed on a saddle.
If the marble is rolled toward the center (where the fixed point lies), then it will
roll off as depicted in Figure 16.1(a). If, however, the saddle is moved slightly
from side to side by applying small perturbations, then the marble can be made to
balance at the center of the saddle, as depicted in Figure 16.1(b).
Some useful points to note:

• The OGY technique is a feedback-control method.
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Figure 16.1: Possible iterations near the fixed point (a) without control and (b)
with control. The double-ended arrows represent small perturbations to the system
dynamics. The iterates Ẑj represent perturbed orbits.

• If the equations are unknown, sometimes delay-coordinate embedding tech-
niques using a single variable time series can be used (the map can be con-
structed from experimental data).

• There may be more than one control parameter available.

• Noise may affect the control algorithm. If the noise is relatively small, the
control algorithm will still work in general.

It should also be pointed out that the OGY algorithm can only be applied once the
orbit has entered a small control region around the fixed point. For certain nonlinear
systems, the number of iterations required—and hence the time—for the orbit to
enter this control region may be too large to be practical. Shinbrot et al. [25] solved
this problem by targeting trajectories to the desired control regions in only a small
number of iterations. The method has also been successfully applied in physical
systems.

16.2 Controlling Chaos in the Logistic Map
Consider the logistic map given by

(16.5) xn+1 = fµ(xn) = µxn(1 − xn)

as introduced in Chapter 12. There are many methods available to control the chaos
in this one-dimensional system, but the analysis is restricted to periodic propor-
tional pulses in this section. For more details on the method and its application to
the Hénon map, the reader is directed to reference [16]. To control the chaos in this
system, instantaneous pulses will be applied to the system variables xn once every
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p iterations such that

xi → kxi,

where k is a constant to be determined and p denotes the period.
Recall that a fixed point of period one, say, xS , of (16.5) satisfies the equation

xS = fµ(xS),

and this fixed point is stable if and only if∣∣∣∣dfµ(xS)

dx

∣∣∣∣ < 1.

Define the composite function Fµ(x) by

Fµ(x) = kf p
µ (x).

A fixed point of the function Fµ satisfies the equation

(16.6) kf p
µ (xS) = xS,

where the fixed point xS is stable if

(16.7)

∣∣∣∣k df
p
µ (xS)

dx

∣∣∣∣ < 1.

Define the function Cp(x) by

Cp(x) = x

f
p
µ (x)

df
p
µ (xS)

dx
.

Substituting from (16.6), (16.7) becomes

(16.8) |Cp(xS)| < 1.

A fixed point of this composite map is a stable point of period p for the original
logistic map when the control is switched on, providing condition (16.8) holds. In
practice, chaos control always deals with periodic orbits of low periods, say, p = 1
to 4, and this method can be easily applied.

To illustrate the method, consider the logistic map when µ = 4 and the
system is chaotic. The functions C1(x), C2(x), C3(x), and C4(x) are shown in
Figure 16.2.

Figure 16.2(a) shows that fixed points of period one can be stabilized for
every xS in the range between zero and approximately 0.67. When p = 2, Figure
16.2(b) shows that fixed points of period two can only be stabilized in three ranges
of xS values. Figures 16.2(c) and 16.2(d) indicate that there are 7 and 14 acceptable
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Figure 16.2: Control curves Ci, i = 1, 2, 3, 4, for the logistic map when µ = 4.
The range is restricted to −1 < Cp(xS) < 1 in each case.

ranges for fixed points of periods three and four, respectively. Notice that the control
ranges are getting smaller and smaller as the periodicity increases.

Figure 16.3 shows time series data for specific examples when the chaos
is controlled to period-one, period-two, period-three, and period-four behavior,
respectively.

The values of xS chosen in Figure 16.3 were derived from Figure 16.2. The
values of k were calculated using (16.6). Note that the system can be stabilized
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Figure 16.3: [Maple] Stabilization of points of periods one, two, three, and four for
the logistic map when µ = 4; (a) xS = 0.4, k = 0.417; (b) xS = 0.2, k = 0.217;
(c) xS = 0.3, k = 0.302; and (d) xS = 0.6, k = 0.601. In each case, k is computed
to three decimal places.

to many different points on and even off the chaotic attractor (see the work of
Chau [16]). A Maple program is listed in Section 16.5.

This method of chaos control by periodic proportional pulses can also be
applied to the two-dimensional discrete Hénon map. The interested reader is again
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directed to reference [16]. The OGY algorithm will be applied to the Hénon map
in the next section.

16.3 Controlling Chaos in the Hénon Map
Ott et al. [27] used the Hénon map to illustrate the control method. A simple
example will be given here. Consider the Hénon map as introduced in Chapter 12.
The two-dimensional iterated map function is given by

(16.9) Xn+1 = 1 + Yn − αX2
n, Yn+1 = βXn,

where α > 0 and |β| < 1. Take a transformation Xn = 1
α
xn and Yn = β

α
yn, then

system (16.9) becomes

(16.10) xn+1 = α + βyn − x2
n, yn+1 = xn.

The proof that system (16.9) can be transformed into system (16.10) will be left to
the reader in the exercises at the end of this chapter. The Hénon map is now in the
form considered in reference [27], and the control algorithm given in Section 16.1
will now be applied to this map. Set β = 0.4 and allow the control parameter, in
this case α, to vary around a nominal value, say, α0 = 1.2, for which the map has
a chaotic attractor.

The fixed points of period one are determined by solving the simultaneous
equations

α0 + βy − x2 − x = 0 and x − y = 0.

In Chapter 12, it was shown that the Hénon map has two fixed points of period
one if and only if (1 − β)2 + 4α0 > 0. In this particular case, the fixed points
of period one are located at approximately A = (x1,1, y1,1) = (0.8358, 0.8358)

and B = (x1,2, y1,2) = (−1.4358, −1.4358). The chaotic attractor and points of
period one are shown in Figure 16.4.

The Jacobian matrix of partial derivatives of the map is given by

J =
⎛
⎝ ∂P

∂x
∂P
∂y

∂Q
∂x

∂Q
∂y

⎞
⎠ ,

where P(x, y) = α0 + βy − x2 and Q(x, y) = x. Thus,

J =
( −2x β

1 0

)
.

Consider the fixed point at A; the fixed point is a saddle point. Using the notation
introduced in Section 16.1, for values of α close to α0 in a small neighborhood of
A, the map can be approximated by a linear map

(16.11) Zn+1 − ZS(α0) = J(Zn − ZS(α0)) + C(α − α0),
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Figure 16.4: Iterative plot for the Hénon map (3000 iterations) when α0 = 1.2
and β = 0.4. The two fixed points of period one are labeled A and B.

where Zn = (xn, yn)
T , A = ZS(α0), J is the Jacobian, and

C =
(

∂P
∂α

∂Q
∂α

)
,

and all partial derivatives are evaluated at α0 and ZS(α0). Assume that in a small
neighborhood of A,

(16.12) α − α0 = −K(Zn − ZS(α0)),

where

K =
(

k1
k2

)
.

Substitute (16.12) into (16.11) to obtain

Zn+1 − ZS(α0) = (J − CK)(Zn − ZS(α0)).

Therefore, the fixed point at A = ZS(α0) is stable if the matrix J − CK has
eigenvalues (or regulator poles) with modulus less than unity. In this particular
case,

J − CK ≈
( −1.671563338 − k1 0.4 − k2

1 0

)
,
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and the characteristic polynomial is given by

λ2 + λ(1.671563338 + k1) + (k2 − 0.4) = 0.

Suppose that the eigenvalues (regulator poles) are given by λ1 and λ2; then

λ1λ2 = k2 − 0.4 and − (λ1 + λ2) = 1.671563338 + k1.

The lines of marginal stability are determined by solving the equations λ1 = ±1
and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and λ2 have
modulus less than unity. Suppose that λ1λ2 = 1. Then

k2 = 1.4.

Suppose that λ1 = +1. Then

λ2 = k2 − 0.4 and λ2 = −2.671563338 − k1.

Therefore,

k2 = −k1 − 2.271563338.

If λ1 = −1, then

λ2 = −(k2 − 0.4) and λ2 = −0.671563338 − k1.

Therefore,

k2 = k1 + 1.071563338.

The stable eigenvalues (regulator poles) lie within a triangular region, as depicted
in Figure 16.5.

Select k1 = −1.5 and k2 = 0.5. This point lies well inside the triangular
region, as depicted in Figure 16.5. The perturbed Hénon map becomes
(16.13)

xn+1 = (−k1(xn − x1,1) − k2(yn − y1,1) + α0
) + βyn − x2

n, yn+1 = xn.

Applying (16.10) and (16.13) without and with control, respectively, it is possible
to plot time series data for these maps. Figure 16.6(a) shows a time series plot
when the control is switched on after the 200th iterate; the control is left switched
on until the 500th iterate. In Figure 16.6(b), the control is switched on after the
200th iterate and then switched off after the 300th iterate. Remember to check that
the point is in the control region before switching on the control.

Once again, the Maple program is listed in Section 16.5.

16.4 Chaos Synchronization
The first recorded experimental observation of synchronization is attributed to
Huygens in 1665. Huygens was attempting to increase the accuracy of time mea-
surement and the experiment consisted of two huge pendula connected by a beam.
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Figure 16.5: The bounded region where the regulator poles are stable.

He recorded that the imperceptible motion of the beam caused mutual antiphase
synchronization of the pendula. Synchronization phenomena were also observed
by van der Pol (1927) and Rayleigh (1945) when investigating radio communi-
cation systems and acoustics in organ pipes, respectively. For other interesting
examples of synchronization without chaos, the reader is directed to the excellent
book by Strogatz [6].

This section is concerned with chaos synchronization, where two, or more,
coupled chaotic systems (which may be equivalent or nonequivalent) exhibit a
common, but still chaotic, behavior. Boccaletti et al. [7] presented a review of
the major methods of chaotic synchronization, including complete synchroniza-
tion, generalized synchronization, lag synchronization, phase, and imperfect phase
synchronization. However, examples and theory of complete and generalized syn-
chronization alone are presented here. The reader is directed to references [8] and
[9] for more information.

Since the pioneering work of Pecora and Carroll [26], the most popular area
of study is probably in secure communications. Electronic and optical circuits have
been developed to synchronize chaos between a transmitter and a receiver. Cuomo
and Oppenheim [19] built electronic circuits consisting of resistors, capacitors,
operational amplifiers, and analog multiplier chips in order to mask and retrieve a
message securely. Optically secure communications using synchronized chaos in
lasers were discussed by Luo et al. [15]. More recently, many papers have appeared
on chaos synchronization with cryptographic applications; see reference [3], for
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Figure 16.6: [Maple] Time series data for the Hénon map with and without control,
r2 = x2 + y2. In case (a), the control is activated after the 200th iterate, and in
case (b), the control is switched off after the 300th iterate.

example. Other examples of chaotic synchronization can be found in chemical
kinetics [5], physiology [10], neural networks [4], and economics [12].

Complete Synchronization. Pecora and Carroll [26] considered chaotic systems
of the form

(16.14) u̇ = f(u),

where u ∈ �n and f : �n → �n. They split system (16.14) into two subsystems—
one the driver system and the other the response:.

ẋ = d(x(t)) driver,

ẏ = r(y(t), x(t)) response,

where x ∈ �k , y ∈ �m, and k + m = n. The vector x(t) represents the driving
signal. Some of the outputs from the driver system are used to drive the response
system. Consider the following simple example involving a Lorenz system (see
Section 13.4). The driver Lorenz system is

(16.15) ẋ1 = σ(x2 − x1), ẋ2 = rx1 − x2 − x1x3, ẋ3 = x1x2 − bx3,
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and the response is given by

(16.16) ẏ2 = −x1y3 + rx1 − y2, ẏ3 = x1y2 − by3.

Note that the response Lorenz system is a subsystem of the driver, and in this
case, x1(t) is the driving signal. Choose the parameter values σ = 16, b = 4, and
r = 45.92; then the driver system (16.15) is chaotic. Pecora and Carroll [26] estab-
lished that synchronization can be achieved as long as the conditional Lyapunov
exponents of the response system, when driven by the driver, are negative. How-
ever, the negativity of the conditional Lyapunov exponents gives only a necessary
condition for stability of synchronization; see reference [7]. To prove stability of
synchronization, it is sometimes possible to use a suitable Lyapunov function (see
Chapter 5). Suppose, in this case, that

(16.17) e = (x2, x3) − (y2, y3) = error signal;
then we can prove that e(t) → 0 as t → ∞, for any set of initial conditions for
the coupled systems (16.15) and (16.16). Consider the following example.

Example 1. Find an appropriate Lyapunov function to show that e(t) → 0 as
t → ∞, for the driver–response system (16.15) and (16.16). Use Maple to show
that the system synchronizes.

Solution. The equations governing the error dynamics (16.17) are given by

ė2 = −x1(t)e3 − e2,

ė3 = x1(t)e2 − be3.

Multiply the first equation by e2 and the second equation by e3 and add to give

e2ė2 + e3ė3 = −e2
2 − be2

3,

and the chaos terms have canceled out. Note that

e2ė2 + e3ė3 = 1

2

d

dt

(
e2

2 + e2
3

)
.

Define a Lyapunov function

V (e2, e3) = 1

2

(
e2

2 + e2
3

)
;

then

V (e2, e3) ≥ 0 and
dV

dt
= −e2

2 − be2
3 < 0,

since b > 0. Therefore, V (e1, e2) is a Lyapunov function and (e2, e3) = (0, 0)

is globally asymptotically stable. A Maple program for system (16.15) is listed in
Section 16.5 and Figures 16.7(a) and 16.7(b) show synchronization of x2(t) with
y2(t) and of x3(t) with y3(t).
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Figure 16.7: [Maple] Synchronization between (16.15) and (16.16): (a) x2(t) and
y2(t) and (b) x3(t) and y3(t).

The choice of driving signal is crucial in complete synchronization; some
conditional Lyapunov exponents can be positive. A different choice of driving
signal can lead to unstable synchronized states; see reference [7], for example.
An alternative coupling configuration that addresses this problem is the auxiliary
system approach, which leads to generalized synchronization.

Generalized Synchronization. Abarbanel et al. [17] introduced the auxiliary sys-
tem approach which utilizes a second, identical response system to monitor the
synchronized motions. They take system (16.14) and split it into three subsystems:
one the driver system, one the response, and the third an auxiliary system, which
is identical to the response system:

ẋ = d(x(t)) driver,

ẏ = r(y(t), g, x(t)) response,

ż = a(z(t), g, x(t)) auxiliary,

where x ∈ �k , y ∈ �m, z ∈ �l , k + m + l = n, and g represents the coupling
strength. They stated that two systems are generally synchronized if there is a
transformation, say, T, so that y(t) = T (x(t)). When the response and auxiliary
are driven by the same signal, y(t) = T (x(t)) and z(t) = T (x(t)), and it is clear
that a solution of the form y(t) = z(t) exists as long as the initial conditions lie
in the same basin of attraction. They further show that when the manifold y = z
is linearly stable, the conditional Lyapunov exponents for the response system,
driven by x(t), are all negative.

As a specific example, they considered generalized synchronization of chaotic
oscillations in a three-dimensional Lorenz system that is driven by a chaotic signal
from a Rössler system. The driver Rössler system is

(16.18) ẋ1 = −(x2 + x3), ẋ2 = x1 + 0.2x2, ẋ3 = 0.2 + x3(x1 − µ),
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the response Lorenz system is
(16.19)
ẏ1 = σ(y2 − y1) − g(y1 − x1), ẏ2 = ry1 − y2 − y1y3, ẏ3 = y1y2 − by3,

and the auxiliary Lorenz system is

(16.20) ż1 = σ(z2−z1)−g(z1−x1), ż2 = rz1−z2−z1z3, ż3 = z1z2−bz3.

Consider

(16.21) e = y(t) − z(t) = error signal.

The function

V (e1, e2, e3) = 1

2

(
4e2

1 + e2
2 + e2

3

)
can be used as a Lyapunov function for the coupled system (16.19) and (16.20) as
long as the coupling parameter g satisfies the inequality

g <

(
1

4
σ + r − z3

)2

+ z2
2

b
− σ.

The zi(t), i = 1, 2, 3, are bounded on a chaotic attractor, and so this condition
can be satisfied when g is large enough. The numerical solutions to the nine-
dimensional differential equations are easily computed with Maple. A program is
listed in Section 16.5. Figure 16.8(a) shows synchronization between y2(t) and
z2(t) when g = 8. Figure 16.8(b) shows that y2(t) and z2(t) are not synchronized
when g = 4.
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Figure 16.8: [Maple] (a) Synchronization between y2(t) and z2(t) when the cou-
pling coefficient is g = 8 between systems (16.18), (16.19), and (16.20). (b) When
g = 4, the system is not synchronized. The coupling is not strong enough.
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16.5 Maple Commands

> # Program 16a: Controlling chaos in the logistic map.

> # Figure 16.3(b): Time series plot.

> restart:mu:=4:

f:=x->mu*x*(1-x):

ff:=expand(f(f(x)));

# Find k when xs=0.2:

k:=0.2/f(f(0.2));

# Initialise.

x:=array(0..10000):

x[0]:=0.6:imax:=100:k:=0.217:

# Switch on the control after the 60’th iterate.

# Kick the system every second iterate.

for i from 0 by 2 to imax do

x[i+1]:=mu*x[i]*(1-x[i]):x[i+2]:=mu*x[i+1]*(1-x[i+1]):

if i>60 then

x[i+1]:=k*mu*x[i]*(1-x[i]):x[i+2]:=mu*x[i+1]*(1-x[i+1]):fi:od:

# Plot the time series data.

with(plots):

pts:=[[m,x[m]]$m=0..imax]:

p1:=plot(pts,style=point,symbol=circle,color=black):

p2:=plot(pts,x=0..imax,y=0..1,color=blue):

display({p1,p2},labels=[‘‘,‘‘]);

> # Program 16b: Controlling chaos in the Henon map.

> # The orbit must be in a control region for the program to work.

> # Figure 16.6(a): Time series plot.

> restart:with(LinearAlgebra):with(plots):

alpha:=1.2:beta:=0.4:

# Find the fixed points of period one.

solve({alpha-xˆ2+beta*y-x,x-y},{x,y});

x:=array(0..10000):y:=array(0..10000):rsqr:=array(0..10000):

xstar:=0.8357816692:ystar:=xstar:

A:=matrix([[-2*xstar-k1,beta-k2],[1,0]]);

# Determine the characteristic polynomial.

expand((-1.671563338-k1-lambda)*(-lambda)-(beta-k2));

# Iterate the system and switch on the control after 200 iterations.

# In this case, regulator poles are chosen to be k1=-1.8 and k2=1.2.

x[0]:=0.5:y[0]:=0.6:imax:=499:

k1:=-1.8:k2:=1.2:

for i from 0 to imax do

x[i+1]:=alpha+beta*y[i]-(x[i])ˆ2:

y[i+1]:=x[i]:

if i>200 then

x[i+1]:=(-k1*(x[i]-xstar)-k2*(y[i]-ystar)+alpha)+beta*y[i]-(x[i])ˆ2:
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y[i+1]:=x[i]:

fi:od:

# Determine the square of the distance of each point from the origin.

for j from 0 to imax do

rsqr[j]:=evalf((x[j])ˆ2+(y[j])ˆ2):

od:

points:=[[m,rsqr[m]]$m=0..imax]:

p1:=plot({points},x=0..imax,y=0..6):

display({p1},labels=[‘n‘,‘rˆ2[n]‘]);

> # Program 16c: Complete synchronization.

> # Figure 16.7(b): Synchronization between two Lorenz systems.

> with(DEtools):

sigma:=16:b:=4:r:=45.92:

LorenzLorenz:=diff(x1(t),t)=sigma*(x2(t)-x1(t)),

diff(x2(t),t)=-x1(t)*x3(t)+r*x1(t)-x2(t),

diff(x3(t),t)=x1(t)*x2(t)-b*x3(t),

diff(y2(t),t)=-x1(t)*y3(t)+r*x1(t)-y2(t),

diff(y3(t),t)=x1(t)*y2(t)-b*y3(t):

dsol:=dsolve({LorenzLorenz,x1(0)=15,x2(0)=20,x3(0)=30,y2(0)=10,y3(0)

=20},

numeric,range=0..100,maxfun=100000):

odeplot(dsol,[x3(t),y3(t)],50..100,labels=["x3","y3"]);

> # Program 16d: Generalized synchronization.

> # Figure 16.8: A Rossler-Lorenz-Lorenz system.

> # Set g=8 to get synchronization.

> g:=4: # No synchronization.

sigma:=16:b:=4:r:=45.92:mu=5.7:

RosslerLorenzLorenz:=diff(x1(t),t)=-(x2(t)+x3(t)),

diff(x2(t),t)=x1(t)+0.2*x2(t),

diff(x3(t),t)=0.2+x3(t)*(x1(t)-mu),

diff(y1(t),t)=sigma*(y2(t)-y1(t))-g*(y1(t)-x1(t)),

diff(y2(t),t)=-y1(t)*y3(t)+r*y1(t)-y2(t),

diff(y3(t),t)=y1(t)*y2(t)-b*y3(t),

diff(z1(t),t)=sigma*(z2(t)-z1(t))-g*(z1(t)-x1(t)),

diff(z2(t),t)=-z1(t)*z3(t)+r*z1(t)-z2(t),

diff(z3(t),t)=z1(t)*z2(t)-b*z3(t):

dsol2:=dsolve({RosslerLorenzLorenz,x1(0)=2,x2(0)=-10,x3(0)=44,y1(0)=30,

y2(0)=10,y3(0)=20,z1(0)=31,z2(0)=11,z3(0)=22},

numeric,method=rkf45,range=0..200,maxfun=0):

odeplot(dsol2,[y2(t),z2(t)],50..200,labels=["y2","z2"],

numpoints=100000);
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16.6 Exercises
1. Show that the map defined by

xn+1 = 1 + yn − ax2
n, yn+1 = bxn

can be written as

un+1 = a + bvn − u2
n, vn+1 = un

using a suitable transformation.

2. Apply the method of chaos control by periodic proportional pulses (see
Section 16.2) to the logistic map

xn+1 = µxn(1 − xn)

when µ = 3.9. Sketch the graphs Ci(x), i = 1 to 4. Plot time series data to
illustrate control of fixed points of periods one, two, three, and four.

3. Find the points of periods one and two for the Hénon map given by

xn+1 = a + byn − x2
n, yn+1 = xn

when a = 1.4 and b = 0.4, and determine their type.

4. Apply the method of chaos control by periodic proportional pulses (see
Section 16.2) to the two-dimensional Hénon map

xn+1 = a + byn − x2
n, yn+1 = xn,

where a = 1.4 and b = 0.4. (In this case, you must multiply xm by k1 and
ym by k2, say, once every p iterations.) Plot time series data to illustrate the
control of points of periods one, two, and three.

5. Use the OGY algorithm given in Section 16.3 to stabilize a point of period
one in the Hénon map

xn+1 = a + byn − x2
n, yn+1 = xn

when a = 1.4 and b = 0.4. Display the control using a time series graph.

6. Consider the Ikeda map, introduced in Chapter 12, given by

En+1 = A + BEne
i|En|2 .

Suppose that En = xn + iyn; rewrite the Ikeda map as a two-dimensional
map in xn and yn. Plot the chaotic attractor for the Ikeda map

En+1 = A + BEne
i|En|2

when A = 2.7 and B = 0.15. How many points are there of period one?
Indicate where these points are with respect to the attractor.
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7. Plot the chaotic attractor for the Ikeda map

En+1 = A + BEne
i|En|2

when

(i) A = 4 and B = 0.15;

(ii) A = 7 and B = 0.15.

How many points are there of period one in each case? Indicate where these
points are for each of the attractors on the figures.

8. Use the OGY method (see Section 16.3) with the parameter A to control the
chaos to a point of period one in the Ikeda map

En+1 = A + BEne
i|En|2

when A0 = 2.7 and B = 0.15. Display the control on a time series plot.
(Note: Use a two-dimensional map.)

9. Try the same procedure of control to period one for the Ikeda map as in
Exercise 8 but with the parameters A0 = 7 and B = 0.15. Investigate the
size of the control region around one of the fixed points in this case and state
how it compares to the control region in Exercise 8. What can you say about
flexibility and controllability?

10. Use the methods described in Section 16.4 to demonstrate synchronization
of chaos in Chua’s circuit.
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Aims and Objectives
• To provide a brief historical background to neural networks.

• To investigate simple neural network architectures.

• To consider applications in the real world.

• To present working Maple program worksheets for some neural networks.

• To introduce neurodynamics.

On completion of this chapter, the reader should be able to

• use the generalized delta learning rule with backpropagation of errors to train
a network;

• determine the stability of Hopfield networks using a suitable Lyapunov func-
tion;

• use the Hopfield network as an associative memory;

• study the dynamics of a neuromodule in terms of bistability, chaos, period-
icity, quasiperiodicity, and chaos control.
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Neural networks are being used to solve all kinds of problems from a wide
range of disciplines. Some neural networks work better than others on specific prob-
lems and the models are run using continuous, discrete, and stochastic methods.
For more information on stochastic methods, the reader is directed to the textbooks
at the end of this chapter. The topic is highly interdisciplinary in nature, and so
it is extremely difficult to develop an introductory and comprehensive treatise on
the subject in one short chapter of a textbook. A brief historical introduction is
given in Section 17.1 and the fundamentals are reviewed. Real-world applications
are then discussed. The author has decided to concentrate on three types of neural
networks—the feedforward multilayer network and backpropagation of errors us-
ing the generalized delta learning rule, the recurrent Hopfield neural network, and
the minimal chaotic neuromodule. The first network is probably the most widely
used in applications in the real world; the second is a much studied network in terms
of stability and Lyapunov functions; and the third provides a useful introduction
to neurodynamics.

For a more detailed historical introduction and review of the theory of neural
networks, the reader is once more directed to the textbooks in the reference section
of this chapter.

Some of the Maple programs listed in Section 17.5 are quite long. Remember
that you can download the worksheets from the Maple Application Center.

17.1 Introduction
This book has thus far been concerned with deterministic dynamical systems where
the underlying equations are known. This chapter provides a means of tackling
nondeterministic systems, where the equations used to model the system are not
known. Unfortunately, many real-world problems do not come prepackaged with
mathematical equations, and often the equations derived might not be accurate or
suitable. Throughout history, scientists have attempted to model physical systems
using mathematical equations. This has been quite successful in some scientific
fields, but not in all. For example, what equations would a doctor use to diagnose
an illness and then prescribe a treatment? How does a bank manager determine
whether to issue a mortgage? How can we tell whether somebody is telling the
truth? These questions have been successfully dealt with by the adoption of neural
networks, or artificial neural networks, as they are sometimes referred to, using
machine learning or data mining. Applications of this theory will be dealt with in
more detail at the end of this section.

Definition 1. A neural network is a parallel information-processing system that
has certain characteristics in common with certain brain functions. It is composed
of neurons and synaptic weights and performs complex computations through a
learning process.
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The brain is a highly complex nonlinear information-processing system. It is a
parallel computer, infinitely more powerful than traditional, electronic, sequential,
logic-based digital computers and powerful parallel and vector computers on the
market today. The average human brain consists of some 1011 neurons, each about
100 µm in size, and approximately 1014 synapses. The integrate and fire neuron
was introduced in Section 4.1. The synapses, or dendrites, are mainly chemical,
converting electrical signals into chemical signals and back to electrical again.
The synapses connecting neurons store acquired knowledge and can be excitory
or inhibitory. It should be pointed out that the numbers of neurons and synaptic
weights do not remain constant in the human brain. Scientists are attempting to
incorporate some features of the way the brain works into modern computing.

NetworkArchitecture. The neuronal model is made up of four basic components:
an input vector, a set of synaptic weights, a summing junction with an activation,
or transfer, function, and an output. The bias increases or decreases the net input of
the activation function. Synapses receive input signals that they send to the neural
cell body; the soma (summing junction) sums these signals; and the axon transmits
the signal to synapses of connecting neurons. A schematic illustrating a simple
mathematical model of a neuron is shown in Figure 17.1.
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Figure 17.1: A simple nonlinear model of a single neuron k. The vector x =
(x1, x2, . . . , xn)

T represents the input; the synaptic weights are denoted by wk =
wkj , j = 1, 2, . . . , n; bk is the bias; φ(·) is the activation function applied after a
summation of the products of weights with inputs; and yk is the output of neuron k.

The neuron has bias bk , which is added to the summation of the products of
weights with inputs to give

vk = wkx + bk,

where vk is the activation potential. The neuron output is written as

yk = φ (vk) .

Note in this case that wk is a vector. The activation function φ(·) typically ranges
from −1 to +1 (is bipolar) in applications and has an antisymmetric form with
respect to the origin. This book will be concerned mainly with bipolar activation
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Figure 17.2: Some activation functions: (a) a Heaviside function; (b) a piecewise
linear function; (c) a sigmoid function; (d) a low-gain saturation function.

functions. There are unipolar activation functions, where the function ranges from
0 to +1, but bipolar functions are predominantly used in applications. Some bipolar
activation functions are shown in Figure 17.2. They are defined by the following
equations:

(a) φ(v) =
{

1, v ≥ 0
−1, v < 0;

(b) φ(v) =
⎧⎨
⎩

1, v ≥ 0.5
v, −0.5 < v < 0.5
−1, v ≤ −0.5;

(c) φ(v) = tanh(av);

(d) φ(v) = 1

2a
log

cosh(a(v + 1))

cosh(a(v − 1))
.

The all-or-none law model of a neuron devised by McCulloch and Pitts [26]
in the early 1940s is widely acknowledged as the origin of the modern theory of
neural networks. They showed, in principle, that the neuron could compute any
arithmetic or logical function. Indeed, even today, the McCulloch–Pitts neuron is
the one most widely used as a logic circuit. In 1949 Hebb [25] proposed the first
learning law for neural networks used to modify synaptic weights. He suggested
that the strength of the synapse connecting two simultaneously active neurons
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should be increased. There are many variations of Hebb’s learning law, and they
are being applied to a variety of neural network architectures; see Section 17.3,
for example. In 1958 Rosenblatt [24] introduced a class of neural network called
the perceptron. A typical architecture is shown in Figure 17.3. It was found that
the perceptron learning rule was more powerful than the Hebb rule. Unfortunately,
shortly afterward it was shown that the basic perceptron could only solve problems
that were linearly separable. One simple example of a problem that is not linearly
separable is the exclusive or (XOR) gate. An XOR gate is a circuit in a computer
that fires only if one of its inputs fire.
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Figure 17.3: A feedforward single-layer network.

Training. In 1960 Widrow and Hoff [23] introduced the ADALINE (ADAptive
LInear NEuron) network and a learning rule labeled as the delta learning rule or the
least mean squared (LMS) algorithm. The perceptron learning rule adjusts synaptic
weights whenever the response is incorrect, whereas the delta learning rule adjusts
synaptic weights to reduce the error between the output vector and the target vector.
This led to an improved ability of the network to generalize. Neither the ADALINE
nor the perceptron were able to solve problems that were not linearly separable, as
reported in the widely publicized book of Minsky and Papert [22]. Rumelhart and
McClelland [17] edited a book that brought together the work of several researchers
on backpropagation of errors using multilayer feedforward networks with hidden
layers (see Figure 17.4). This algorithm partially addressed the problems raised
by Minsky and Papert in the 1960s. Currently, over 90% of the applications to
real-world problems use the backpropagation algorithm with supervised learning.
Supervised learning is achieved by presenting a sequence of training vectors to the
network, each with a corresponding known target vector. A complete set of input
vectors with known targets is known as an epoch; it is usually loaded as a data file.
A backpropagation algorithm using a supervised generalized delta learning rule
is discussed in more detail in Section 17.2. Throughout the 1980s, Kohonen [21]
developed self-organizing feature maps to form clusters for unsupervised learning.
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Figure 17.4: A feedforward neural network with one hidden layer; there are three
neurons in the hidden layer and two in the output layer.
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Figure 17.5: A recurrent Hopfield neural network with feedback. Note that there
is no self-feedback in this case.

No target vectors are required for this algorithm—similar input vectors are assigned
the same output cluster.

The seminal paper of Hopfield [20] published in 1982 used statistical me-
chanics to explain the operation of a recurrent neural network used as an associative
memory. The architecture of a recurrent Hopfield neural network comprising three
neurons is shown in Figure 17.5. The main difference between a feedforward net-
work and a recurrent network is that there is feedback in the latter case. Figure
17.5 illustrates the multiple-loop feedback for a three-neuron module. Note that
the output of each neuron is fed back to each of the other neurons in the network.

The network operation can be analyzed using Lyapunov functions (see Sec-
tion 5.2). Both continuous and discrete recurrent Hopfield networks are discussed
in more detail in Section 17.3.
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Applications. The field of neural networks has generated a phenomenal amount
of interest from a broad range of scientific disciplines. One of the reasons for this
is adaptability. Innovative architectures and new training rules have been tested
on powerful computers, and it is difficult to predict where this research will take
us in the future. As mentioned earlier, the vast majority of real-world applications
have relied on the backpropagation algorithm for training multilayer networks, and,
recently, kernel machines have proved to be useful for a wide range of applications,
including document classification and gene analysis, for example. In general, more
than one network is required and each network is designed to perform a specific
task. Some well-known applications are listed and a more in-depth account is
given for the research carried out on psychological profiling in the Department of
Computing and Mathematics at Manchester Metropolitan University. See the Web
pages at http://www.doc.mmu.ac.uk/RESEARCH/Intelgrp/ for more information.
The list is by no means exhaustive and it will not be difficult for the reader to find
examples applied in their own research area.

Neural networks are being used extensively in the fields of aeronautics, bank-
ing, defense, engineering, finance, insurance, marketing, manufacturing, medicine,
robotics, psychology, security, and telecommunications. One of the early applica-
tions was in signal processing; the ADALINE was used to suppress noise on a
telephone line. Many neural networks are being used as associative memories for
pattern and speech production and recognition, for example. Simple networks can
be set up as instant physicians. The expertise of many general practitioners can be
used to train a network using symptoms to diagnose an illness and even suggest a
possible treatment. In engineering, neural networks are being used extensively as
controllers, and in banking, they are being used in mortgage assessment. Scientists
find them very useful as function approximators. They can test whether the math-
ematical equations (which could have been used for many years) used to model a
system are correct.

The Artificial Intelligence Group at Manchester Metropolitan University has
developed a machine for automatic psychological profiling. The work has gener-
ated a huge amount of interest and recently was reported on national television in
many countries around the world. Bandar et al. [6] have patented the machine, and
the expectations are high for future applications. The machine could be used in
police questionning, at airport customs, and by doctors diagnosing schizophrenia,
depression, and stress. A short article on using the machine as a lie detector has
recently appeared in New Scientist [5]. The group claims that the lie detector is
accurate in 80% of test cases. Their machine uses about 20 independent neural
networks, each one using the generalized delta learning rule and backpropagation
of errors. Some of the channels used in the machine include eye gaze, blinking,
head movement forward, hand movement, and blushing.

The same group has also carried out extensive work on conversational agents.
It will not be long before we are all able to have conversations with our com-
puters.
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This introductory section has given a brief overview of neural networks. For
more detailed information, the reader is directed to the references [4], [8]–[10],
[13], and [15].

17.2 The Delta Learning Rule and Backpropagation
Widrow and Hoff [23] generalized the perceptron training algorithm to continuous
inputs and outputs and presented the delta rule (or LMS rule). Consider a single
neuron as in Figure 17.1. If the activation function is linear, then

yk =
∑
j

wkj xj + bk.

Define an error function by the mean squared error; so

E = 1

2N

∑
x

(Ex
k )2 = 1

2N

∑
x

(tk − yk)
2 ,

where the index x ranges over all input vectors, N is the number of neurons, Ex

is the error on vector x, and tk is the target (or desired) output when vector x is
presented. The aim is to minimize the error function E with respect to the weights
wkj . It is an unconstrained optimization problem; parameters wkj are sought to
minimize the error. The famous method of steepest descent is applied to the error
function. Theorem 1 gives the delta rule when the activation function is linear.
There are two ways to update the synaptic weights using the generalized delta rule.
One is instantaneously (a weight is updated on each iteration) and the other is batch
(where the weights are updated based on the average error for one epoch).

Theorem 1. The iterative method of steepest descent for adjusting the weights in
a neural network with a linear activation function is given by

wkj (n + 1) = wkj (n) − ηgkj ,

where n is the number of iterates, gkj = − (tk − yk) xj is the gradient vector, and
η is a small positive constant called the learning rate.

Proof. Partially differentiating the error with respect to the weight vector gives

∂E(wkj )

∂wkj

= ∂E

∂Ex
k

∂Ex
k

∂yk

∂yk

∂wkj

.

Now

∂E

∂Ex
k

= Ex
k = (tk − yk) ,

∂Ex
k

∂yk

= −1,
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and

∂yk

∂wkj

= xj .

An estimate for the gradient vector is

gkj = (yk − tk) xj .

The delta rule for a linear activation function is thus formulated as

wkj (n + 1) = wkj (n) − ηgkj ,

where η is the learning rate parameter. The choice of η is important in applications.
If it is too large, the algorithm can become unstable. One normally experiments
with η; it is not desirable for the algorithm to converge too slowly.

Note that there are other optimization methods available, such as Newton’s
method and the Gauss–Newton method, which converge quicker and are less sen-
sitive to the choice of η.

Theorem 2. When the activation function is nonlinear, say, yk = φ (vk), the
generalized delta rule can be formulated as

(17.1) wkj (n + 1) = wkj (n) − ηgkj ,

where

(17.2) gkj = (yk − tk)
∂φ

∂vk

xj .

Proof. The proof will be left as an exercise for the reader in Section 17.6.

Backpropagation Algorithm. If neuron k is an output neuron, then Theorem 2
can be applied to adjust the weights of the synapses. However, if neuron j is a
hidden neuron in a layer below neuron k, as depicted in Figure 17.6, then a new
algorithm is required.

Theorem 3. When neuron j is in a hidden layer, the error backpropagation rule
is formulated as

(17.3) wji(n + 1) = wji(n) − ηgji,

where

(17.4) gji =
∑

k

(
(yk − tk)

∂φ

∂vk

wkj

)
∂φ

∂vj

ui .
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Figure 17.6: An output neuron k connected to a hidden neuron j .

Proof. The proof is left as an exercise for the reader. The error is backpropagated
through the network, layer by layer—back to the input layer, using gradient de-
scent.

The generalized delta rule and backpropagation will now be applied to exam-
ples for estimating the value of owner-occupied homes in Boston, Massachusetts
in the 1970s.

The Boston housing data was downloaded from the UCI Machine Learn-
ing Repository on theWeb at http://www.ics.uci.edu/∼mlearn/MLRepository.html.
The data can be found in the file housing.txt that can be downloaded from the Maple
Application Center. Other databases at the site include arrhythmia data, automobile
miles per gallon data, breast cancer data, and credit screening data.

The Boston housing data was created by D. Harrison and D. L. Rubinfeld,
(Hedonic prices and the demand for clean air, Journal of Environmental Economics
and Management, 5 (1978), 81–102). They reported on housing values in the sub-
urbs of Boston. There are 506 input vectors and 14 attributes, including per capita
crime rate by town, average number of rooms per dwelling, and pupil–teacher ratio
by town.

Example 1. Write a Maple program to apply the generalized delta learning rule
to the Boston housing data for three attributes: columns 6 (average number of
rooms), 9 (index of accessibility to radial highways), and 13 (percentage lower
status of population), using the target data presented in column 14 (median value
of owner-occupied homes in thousands of dollars). Use the activation function
φ(v) = tanh(v) and show how the weights are adjusted as the number of iterations
increases. This is a simple three-neuron feedforward network; there are no hidden
layers and there is only one output (see Figure 17.1).

Solution. The Maple program file is listed in Section 17.5. A summary of the
algorithm is listed below to aid in understanding the program:

1. Scale the data to zero mean, unit variance, and introduce a bias on the input.

2. Set small random weights.

3. Set the learning rate, say, η, and the number of epochs.

4. Calculate model outputs yk , the error tk −yk , and the gradients g and perform
the gradient descent to evaluate wkj (n+1) = wkj (n)−ηgkj for each weight;
see (17.1).
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5. Plot a graph of weight values versus number of iterations.

Note that φ′(v) = 1 − (φ(v))2, since φ(v) = tanh(v). The reader will be
asked to verify this in the exercises. The synaptic weights converge to the following
approximate values: b1 ≈ −0.27, w11 ≈ 0.2, w12 ≈ −0.04, and w13 ≈ −0.24,
as shown in Figure 17.7.
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Figure 17.7: [Maple] Updates of the four weights (including the bias) against the
number of iterations.

Example 2. Use the generalized delta rule with batch backpropagation of errors
on the full data set listed in housing.txt for the Boston house data. Use the same
activation function as in Example 1 and introduce one hidden layer in the neural
network. Compare performance for one and two neurons in the hidden layer when
η = 0.05. One epoch consists of 506 input vectors, each with one target, and there
are 13 input vectors.

Solution. A summary of the algorithm is listed to aid in producing the program
(which is left as an exercise for the reader):

1. Scale the data to zero mean, unit variance, and introduce a bias on the input.

2. Iterate over the number of neurons in the hidden layer.

3. Set random weights for the hidden and output layers.

4. Iterate over a number of epochs using batch error backpropagation.

(a) Compute model outputs and the error.

(b) Compute output and hidden gradients and perform gradient descent.

(c) Determine the mean squared error for each epoch.
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5. Plot a graph of mean squared error versus the number of epochs for each
number of neurons in the hidden layer.
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Figure 17.8: Number of epochs versus mean squared error for the Boston housing
data. The upper curve is the error with one hidden neuron (settles to approximately
0.2); the lower curve is the error with two hidden neurons (stabilizes to approxi-
mately 0.14). The learning rate used in this case was η = 0.05.

Note that it is possible to work with any number of hidden layers, but, in
general, one hidden layer suffices. Indeed, it has been shown that one hidden layer
is sufficient to approximate any continuous function. Often the functionality that
comes from extra hidden layers causes the network to overfit. The results on the
full data set are shown in Figure 17.8.

17.3 The Hopfield Network and Lyapunov Stability
This section is concerned with recurrent neural networks that have fixed synaptic
weights but where the activation values undergo relaxation processes through feed-
back. A primary application of the Hopfield network is as an associative memory,
where the network is used to store patterns for future retrieval. The synaptic weights
are set such that the stable points of the system correspond with the input patterns
to be stored. One can think of these states as local minima in energy space. When a
noisy or incomplete test pattern is input, the system should settle onto a stable state
that corresponds to a stored pattern. A discrete Hopfield network is discussed in
some detail later in this section, where it is used as an associative memory on some
patterns. It should be noted that another famous problem addressed by Hopfield
and Tank [18] was in optimization and is known as the traveling salesman prob-
lem. Simple continuous Hopfield networks are considered before the applications
in order to highlight stability properties using Lyapunov functions.
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The Continuous Hopfield Model. A Hopfield network does not require training
data with targets.A network consisting of three neurons is shown in Figure 17.5, and
a two-neuron module is shown in Figure 17.6. In 1984, Hopfield [19] showed how
an analog electrical circuit could behave as a small network of neurons with graded
response. He derived a Lyapunov function for the network to check for stability
and used it as a content-addressable memory. The differential equations derived
by Hopfield for the electrical circuit using Kirchhoff’s laws could be reduced to
the following system of differential equations:

(17.5)
d

dt
x(t) = −x(t) + Wa(t) + b,

where x(t) is a vector of neuron activation levels, W is the weight matrix represent-
ing synaptic connections, b are the biases, and a(t) = φ (x(t)) are the nonlinear
input/output activation levels. Hopfield derived the following theorem for stability
properties.

Theorem 4. A Lyapunov function for the n-neuron Hopfield network defined by
(17.5) is given by

(17.6) V(a) = −1

2
aT Wa +

n∑
i=1

(∫ ai

0
φ−1(u) du

)
− bT a

as long as the following hold:

1. φ−1(ai) is an increasing function; that is,

d

dai

φ−1(ai) > 0;

2. the weight matrix W is symmetric.

Proof. The proof is left as an exercise for the reader (see Section 17.6).

Consider the following two-neuron module taken from Hopfield’s original
paper [19].

Example 3. A schematic of the two-neuron module is shown in Figure 17.9. The
differential equations used in Hopfield’s model are given by

ẋ = −x + 2

π
tan−1

(γπy

2

)
, ẏ = −y + 2

π
tan−1

(γπx

2

)
,

where the activation functions are arctan. Determine the stable critical points and
derive a Lyapunov function.
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Figure 17.9: A simple recurrent Hopfield neural network, a two-neuron module.

Solution. In this case,

W =
(

0 1
1 0

)
, b =

(
0
0

)
,

a1 = 2

π
tan−1

(γπx

2

)
, a2 = 2

π
tan−1

(γπy

2

)
.

A Lyapunov function, derived using (17.6), is given by

V(a) = −1

2
(a1 a2)

(
0 1
1 0

)(
a1
a2

)
+

∫ a1

0
φ−1(u) du

+
∫ a2

0
φ−1(u) du − (0 0)

(
a1
a2

)
.

Therefore,

V(a) = −a1a2 − 4

γπ2 (log (cos(πa1/2)) + log (cos(πa2/2))) .

Vector field plots for the differential equations are shown in Figure 17.10. The
corresponding Lyapunov functions can be plotted using Maple when γ is given
(see Section 5.2). Plot the surface for |ai | ≤ 1, i = 1, 2.

When 0 < γ ≤ 1, there is one stable critical point at the origin (see Figure
17.10(a)). As γ passes through 1, two stable critical points bifurcate from the
origin and the critical point at the origin becomes unstable (see Figure 17.10(b)).
As γ → ∞, the stable critical points approach corners of the unit square as depicted
in Figure 17.10(c).
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Figure 17.10: Vector field plots when (a) 0 < γ ≤ 1, (b) γ > 1, and (c) γ → ∞.

Example 4. Consider the recurrent Hopfield network modeled using the differen-
tial equations

ẋ = −x + 2

(
2

π
tan−1

(γπx

2

))
, ẏ = −y + 2

(
2

π
tan−1

(γπy

2

))
.
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Plot a vector field portrait and derive a suitable Lyapunov function.

Solution. In this case,

W =
(

2 0
0 2

)
and b =

(
0
0

)
.

A vector field plot is shown in Figure 17.11. There are four stable critical points
and five unstable critical points.
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Figure 17.11: A vector field plot for Example 4 when γ = 0.7. There are nine
critical points.

A Lyapunov function is given by

V(a) = −(a2
1 + a2

2) − 4

γπ2 (log (cos(πa1/2)) + log (cos(πa2/2))) .

You can plot the Lyapunov function using Maple.
Continuous Hopfield networks with self-feedback loops can be Lyapunov sta-

ble. However, discrete systems must have no self-feedback to guarantee Lyapunov
stability.

The Discrete Hopfield Model. Hopfield [18–20] used his network as a content-
addressable memory using fixed points as attractors for certain fundamental mem-
ories. The Hopfield model can be summarized using the following four-step algo-
rithm. There is no self-feedback in this case.

1. Hebb’s Postulate of Learning. Let x1, x2, . . . , xM denote a set of N -di-
mensional fundamental memories. The synaptic weights of the network are
determined using the formula

W = 1

N

M∑
r=1

xrxT
r − M

N
In,
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where In is the N ×N identity matrix. Once computed, the synaptic weights
remain fixed.

2. Initialization. Let xp denote the unknown probe vector to be tested. The
algorithm is initialized by setting

xi(0) = xip, i = 1, 2, . . . , N,

where xi(0) is the state of neuron i at time n = 0, xip is the ith element of
vector xp, and N is the number of neurons.

3. Iteration. The elements are updated asynchronously (i.e., one at a time in a
random order) according to the rule

xi(n + 1) = hsgn

⎛
⎝ N∑

j=1

wijxj (n)

⎞
⎠ , i = 1, 2, . . . , N,

where

hsgn(vi(n + 1)) =
⎧⎨
⎩

1, vi(n + 1) > 0
xi(n), vi(n + 1) = 0
−1, vi(n + 1) < 0

and vi(n+1) = ∑N
j=1 wijxj (n). The iterations are repeated until the vector

converges to a stable value. Note that at least N iterations are carried out to
guarantee convergence.

4. Result. The stable vector, say, xfixed, is the result.

The above algorithm uses asynchronous updating of synaptic weights. Syn-
chronous updating is the procedure by which weights are updated simultaneously.
The fundamental memories should first be presented to the Hopfield network. This
tests the network’s ability to recover the stored vectors using the computed synaptic
weight matrix. The desired patterns should be recovered after one iteration; if not,
then an error has been made. Distorted patterns or patterns missing information
can then be tested using the above algorithm. There are two possible outcomes.

1. The network converges to one of the fundamental memories.

2. The network converges to a spurious steady state. Spurious steady states
include the following:
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(a) Reversed fundamental memories—for example, if xf is a fundamental
memory, then so is −xf .

(b) Mixed fundamental memories—a linear combination of fundamental
memories.

(c) Spin-glass states—local minima not correlated with any fundamental
memories.

Before looking at an application of a Hopfield network as a content-addressable
memory, a simple example is given below to illustrate the algorithm.

Example 5. A five-neuron discrete Hopfield network is required to store the fol-
lowing fundamental memories:

x1 = (1, 1, 1, 1, 1)T , x2 = (1, −1, −1, 1, −1)T , x3 = (−1, 1, −1, 1, 1)T .

(a) Compute the synaptic weight matrix W.

(b) Use asynchronous updating to show that the three fundamental memories
are stable.

(c) Test the following vectors on the Hopfield network (the random orders affect
the outcome):

x4 = (1, −1, 1, 1, 1)T , x5 = (0, 1, −1, 1, 1)T , x6 = (−1, 1, 1, 1, −1)T .

Solutions.

(a) The synaptic weight matrix is given by

W = 1

5

(
x1xT

1 + x2xT
2 + x3xT

3

)
− 3

5
I5,

so

W = 1

5

⎛
⎜⎜⎜⎜⎝

0 −1 1 1 −1
−1 0 1 1 3
1 1 0 −1 1
1 1 −1 0 1

−1 3 1 1 0

⎞
⎟⎟⎟⎟⎠ .

(b) Step 1. First input vector, x1 = x(0) = (1, 1, 1, 1, 1)T .

Step 2. Initialize x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = 1.
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Step 3. Update in random order x3(1), x4(1), x1(1), x5(1), x2(1), one at a
time.

x3(1) = hsgn(0.4) = 1,

x4(1) = hsgn(0.4) = 1,

x1(1) = hsgn(0) = x1(0) = 1,

x5(1) = hsgn(0.8) = 1,

x2(1) = hsgn(0.8) = 1.

Thus, x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x1.

Step 1. Second input vector, x2 = x(0) = (1, −1, −1, 1, −1)T .

Step 2. Initialize x1(0) = 1, x2(0) = −1, x3(0) = −1, x4(0) = 1, x5(0) =
−1.

Step 3. Update in random order x5(1), x3(1), x4(1), x1(1), x2(1), one at a
time.

x5(1) = hsgn(−0.8) = −1,

x3(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(0) = x4(0) = 1,

x1(1) = hsgn(0.4) = 1,

x2(1) = hsgn(−0.8) = −1.

Thus, x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x2.

Step 1. Third input vector, x3 = x(0) = (−1, 1, −1, 1, 1)T .

Step 2. Initialize x1(0) = −1, x2(0) = 1, x3(0) = −1, x4(0) = 1, x5(0) =
1.

Step 3. Update in random order x5(1), x1(1), x4(1), x2(1), x3(1), one at a
time.

x5(1) = hsgn(0.8) = 1,

x1(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(0.4) = 1,

x2(1) = hsgn(0.8) = 1,

x3(1) = hsgn(0) = x3(0) = −1.

Thus, x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x3.
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(c) Step 1. Fourth input vector, x4 = x(0) = (1, −1, 1, 1, 1)T .

Step 2. Initialize x1(0) = 1, x2(0) = −1, x3(0) = 1, x4(0) = 1, x5(0) = 1.

Step 3. Update in random order x2(1), x4(1), x3(1), x5(1), x1(1), one at a
time.

x2(1) = hsgn(0.8) = 1,

x4(1) = hsgn(0.4) = 1,

x3(1) = hsgn(0.4) = 1,

x5(1) = hsgn(0.8) = 1,

x1(1) = hsgn(0) = x1(0) = 1.

Thus, x(1) = x1 and the net has converged.

Step 4. The net has converged to the steady state x1.

Step 1. Fifth input vector, x5 = x(0) = (0, 1, −1, 1, 1)T , information is
missing in the first row.

Step 2. Initialize x1(0) = 0, x2(0) = 1, x3(0) = −1, x4(0) = 1, x5(0) = 1.

Step 3. Update in random order x4(1), x5(1), x1(1), x2(1), x3(1), one at a
time.

x4(1) = hsgn(0.6) = 1,

x5(1) = hsgn(0.6) = 1,

x1(1) = hsgn(−0.4) = −1,

x2(1) = hsgn(0.8) = 1,

x3(1) = hsgn(0) = x3(0) = −1.

Thus, x(1) = x3 and the net has converged.

Step 4. The net has converged to the steady state x3.

Step 1. Sixth input vector, x6 = x(0) = (−1, 1, 1, 1, −1)T .

Step 2. Initialize x1(0) = −1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) =
−1.

Step 3. Update in random order x3(1), x2(1), x5(1), x4(1), x1(1), one at a
time.

x3(1) = hsgn(−0.4) = −1,

x2(1) = hsgn(−0.4) = −1,

x5(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(−0.4) = −1,

x1(1) = hsgn(0) = x1(0) = −1.
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Step 3 (again). Update in random order x2(1), x1(1), x5(1), x4(1), x3(1), one
at a time.

x2(2) = hsgn(−0.8) = −1,

x1(2) = hsgn(0) = x1(1) = −1,

x5(2) = hsgn(−0.8) = −1,

x4(2) = hsgn(−0.4) = −1,

x3(2) = hsgn(−0.4) = −1.

Thus, x(2) = x(1) and the net has converged.
Step 4. The net has converged to the spurious steady state −x1.

Example 6. Write a Maple program that illustrates the behavior of the discrete
Hopfield network as a content-addressable memory using N = 81 neurons and the
set of handcrafted patterns displayed in Figure 17.12.

Figure 17.12: The patterns to be used as fundamental memories for the discrete
Hopfield model.

Solution. See the program listed in Section 17.6 as a guide. Set a noise level to 1
3 .

On average, the network will converge after 1
3 × 81 = 27 iterations. In order for

this algorithm to work, the vectors defining the patterns have to be as orthogonal
as possible. If some patterns are similar, the network will not perform very well.
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17.4 Neurodynamics
It is now understood that chaos, oscillations, synchronization effects, wave patterns,
and feedback are present in higher-level brain functions and on different levels of
signal processing. In recent years, the disciplines of neuroscience and nonlinear
dynamics have increasingly coalesced, leading to a new branch of science called
neurodynamics. This section will concentrate on a minimal chaotic neouromodule,
studied in some detail by Pasemann and his group [12, 14] (see also reference [4]
in Chapter 12). They have considered chaos control and synchronization effects for
this simple model, and the author and Bandar have recently demonstrated bistability
for this class of system (see reference [1] in Chapter 12).

A Minimal Chaotic Neuromodule. The discrete two-dimensional system inves-
tigated by Pasemann is defined by the map
(17.7)
xn+1 = b1 + w11φ1(xn) + w12φ2(yn), yn+1 = b2 + w21φ1(xn) + w22φ2(yn),

where its activity at time n is given by (xn, yn), b1 and b2 are biases, wij are
the synaptic weights connecting neurons, and φ represents the transfer function
defined by

(17.8) φ1(x) = φ2(x) = 1

1 + e−x
.

The simple network architecture of this recurrent module with an excitory neuron
and an inhibitory neuron with self-connection is shown in Figure 17.9. Pasemann
and Stollenwerk (see reference [4] in Chapter 12) considered the model with the
following parameter values:

(17.9) b1 = −2, b2 = 3, w11 = −20, w21 = −6, w12 = 6, and w22 = 0.

Figure 17.13 shows the chaotic attractor for system (17.7) using the transfer
function in (17.8) and the parameters listed in (17.9).

The fixed points of periods one and two may be found in the usual way.
Fixed points of period one satisfy the simultaneous equations xn+1 = xn = x and
yn+1 = yn = y. There is one fixed point of period one at P11 = (−1.2804, 1.6951),
working to four decimal places. The stability of this fixed point is determined by
considering the eigenvalues of the Jacobian matrix given by

J =
(

w11
∂
∂x

φ1(x) w12
∂
∂y

φ2(y)

w21
∂
∂x

φ1(x) 0

)
.

The eigenvalues for the fixed point of period one are given by λ1 = −3.1487, and
λ2 = −0.2550, and the fixed point is a saddle point. Hence, P11 is unstable.

The fixed points of period two are found by solving the equations xn+2
= xn = x and yn+2 = yn = y, which has two solutions at P21 = (−7.8262,

−0.4623) and P22 = (0.3107, 2.9976). These fixed points are also unstable.
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Figure 17.13: [Maple] The chaotic attractor for a minimal chaotic neuromodule.

A Bistable Neuromodule. As with many nonlinear dynamical systems, higher-
level brain functions can be subject to feedback. The author and Bandar (see refer-
ence [1] in Chapter 12) have investigated system (17.7) with the following choice
of parameters:

(17.10) b1 = 2, b2 = 3, w11 = 7, w21 = 5, w12 = −4, and w22 = 0,

and using the transfer functions

(17.11) φ1(x) = tanh(ax) and φ2(y) = tanh(αy),

with a = 1 and α = 0.3. Using numerical techniques, there are three fixed
points of period one at P11 = (−2.8331, −1.9655), P12 = (0.2371, 4.1638),
and P13 = (5.0648, 7.9996). Using the Jacobian matrix, point P11 has eigenvalues
λ1 = 0.0481 + 0.2388i, and λ2 = 0.0481 − 0.2020i. The fixed point is stable
since |λ1| < 1 and |λ2| < 1. Points P12 and P13 have eigenvalues λ1 = 6.3706 and
λ2 = 0.2502 and λ1 = 0.0006+0.0055i and λ2 = 0.0006−0.0055i, respectively.
Therefore, point P12 is an unstable saddle point and point P13 is stable, since both
eigenvalues have modulus less than 1. We conclude that system (17.7) with the
parameter values given in (17.10) and the transfer functions defined by (17.11) is
multistable; that is, there are two stable fixed points for one set of parameter values
and the fixed point attained is solely dependent on the initial conditions chosen.

Now introduce a feedback mechanism. In the first case, we vary the parameter
α, which determines the gradient of the transfer function φ2(y). The other param-
eters are fixed as in (17.10). The parameter α is increased linearly from α = −5
to α = 5 and then decreased back down to α = −5. Figure 17.14 shows the bifur-
cation diagrams for the activity of neuron x. Similar bifurcation diagrams may be
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plotted for the neuron y. The upper figure shows the activity against the number of
iterations. The lower figure shows the activity level of neuron x as the parameter
α is increased and then decreased. As α is increased from −5, the steady state is
on the lower branch until α ≈ 1, where there is a sudden jump to the other steady
state. As α increases further, the steady state remains at xn ≈ 5. As α is decreased,
the steady state remains at xn ≈ 5 until α ≈ 0, where it jumps to xn ≈ 15. There
is a large bistable region for −5 < α < 1, approximately.
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x n

−5 0 5
−10

−5

0

5

10

α

x n

Figure 17.14: Bifurcation diagrams for system (17.7) under conditions (17.10)
and (17.11) as α varies. The initial conditions chosen at α = −5 were x0 = −10
and y0 = −3.

In the second case, fix the parameters and vary b1, which is the bias for
neuron x. The parameter b1 is ramped up from b1 = −5 to b1 = 5, and then
ramped back down to b1 = −5. There is an isolated counterclockwise bistable
region for −1 < b1 < 3.5, approximately. Note the ringing at both ends of the
bistable region; see Figure 17.15.

In the final case, fix the parameters and vary w11, which is the synaptic weight
connecting neuron x to itself. The parameter is decreased from w11 = 7 down to
zero and then increased back up to w11 = 7. The activity of neuron x is on the lower
branch until w11 ≈ 5.5, where it jumps to the upper branch. As w11 decreases, the
system descends into regions of quasiperiodicity and periodicity. As the parameter
is increased from zero, the steady state remains on the upper branch, and there is
a bistable region for 5.5 < w11 < 7, approximately; see Figure 17.16.

Clearly, the dynamics of this simple two-neuron module are dependent on the
history of the system. The author and his co-workers at Manchester Metropolitan
University are currently investigating areas of application for this research.
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Figure 17.15: Bifurcation diagrams for system (17.7) under conditions (17.10)
and (17.11) as b1 varies. The initial conditions chosen at b1 = −5 were x0 = −10
and y0 = −3.
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Figure 17.16: [Maple] Bifurcation diagrams for system (17.7) under conditions
(17.10) and (17.11) as w11 varies. The initial conditions chosen at w11 = 7 were
x0 = −3 and y0 = −2.
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17.5 Maple Commands
Using the Help Browser, the reader should type readdata to see how data are
loaded into a worksheet.

> # Program 17a: The generalized delta learning rule.

> # Determine where on your computer the data file housing.txt is located.

> # Figure 17.7: Time series plot.

> restart:with(LinearAlgebra):with(Statistics):with(RandomTools):

Dim:=506:

# On my computer housing.txt was in the C:\Temp\ folder.

ourdata:=readdata("C:\\Temp\\housing.txt",Dim):

ourMatrix:=Matrix(ourdata):

# Scale all data to zero mean and unit variance.

M:=Transpose(ourMatrix):

T:=M[14]:

meant:=(max(T)+min(T))/2:tstd:=(max(T)-min(T))/2:

ones:=[seq(1,i=1..Dim)]:TT:=(convert(M[14],listlist)-ones.meant)/tstd:

M6:=(convert(M[6],listlist)-ones.Mean(M[6]))/StandardDeviation(M[6]):

M9:=(convert(M[9],listlist)-ones.Mean(M[9]))/StandardDeviation(M[9]):

M13:=(convert(M[13],listlist)-ones.Mean(M[13]))/StandardDeviation(M[13]):

X:=Transpose(Matrix([[seq(1,i=1..Dim)],M6,M9,M13])):

ww[1]:=0.1*Matrix(4,1,Generate(rational(denominator=10),makeproc=true)):

epochs:=10:eta:=0.001:k:=1:

for n from 1 to epochs do

for j from 1 to Dim do

yk:=evalf(map(x->tanh(x),X[j].ww[k]));

err:=evalm(yk-[TT[j]])[1];

g:=Transpose(X[j]).(1-yk.yk)*err;

ww[k+1]:=ww[k]-eta*Matrix(4,1,g);

k:=k+1;

end do;end do;

with(plots):NumPoints:=epochs*Dim:

points1:=[[a,ww[a][1][1]]$a=1..NumPoints]:

points2:=[[a,ww[a][2][1]]$a=1..NumPoints]:

points3:=[[a,ww[a][3][1]]$a=1..NumPoints]:

points4:=[[a,ww[a][4][1]]$a=1..NumPoints]:

plot({points1,points2,points3,points4},x=0..NumPoints,style=point,

symbol=point,labels=["Number of Iterations","Weights"]);

> # Program 17b: A discrete Hopfield network, asynchronous updating.

> # Example 5: You can show that the three fundamental memories are

> # stable.

restart:with(LinearAlgebra):

X:=Matrix([[1,1,1,1,1],[1,-1,-1,1,-1],[-1,1,-1,1,1]]);

W:=Transpose(X).X‘/5-3*IdentityMatrix(5)/5;
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with(combinat,randperm):

n:=randperm(5);

# The input vector.

xinput:=Matrix([-1,-1,-1,1,-1]);xtest:=xinput:

hsgn:=(v,x)->piecewise(v>0,1,v=0,x,v<0,-1):

for j from 1 to 5 do

m:=n[j]:

v:=W[m].Transpose(xtest):

xtest([m]):=hsgn(v(1),xtest(m)):end do:

xoutput=xtest;

if convert(xtest,list)=convert(X[1],list)

then print("Net has converged to X1"):

elif convert(xtest,list)=convert(X[2],list)

then print("Net has converged to X2"):

elif convert(xtest,list)=convert(X[3],list)

then print("Net has converged to X3"):

else print("Iterate again: May have converged to a spurious

steady-state"):

end if:

“Net has converged to X2”

> # Program 17c: Chaotic attractor.

> # Figure 17.13: Chaotic attractor for a minimal chaotic neuromodule.

> x:=array(0..100000):y:=array(0..100000):

b1:=-2:b2:=3:w11:=-20:w21:=-6:w12:=6:imax:=10000:

x[0]:=1:y[0]:=0.2:

for i from 0 to imax do

x[i+1]:=evalf(b1+w11/(1+exp(-x[i]))+w12/(1+exp(-y[i]))):

y[i+1]:=evalf(b2+w21/(1+exp(-x[i]))):end do:

with(plots):

points:=[[x[n],y[n]]$n=50..imax]:

pointplot(points,style=point,symbol=point,color=blue,axes=BOXED,

font=[TIMES,ROMAN,15]);

> # Program 17d: Bifurcation diagram for a bistable neuromodule.

> # Figure 17.16: The bifurcation diagram displays quasiperiodic and

> # bistable behaviors.

restart:start:=7:Max:=7:b2:=3:b1:=2:w12:=-4:w21:=5:

halfN:=9999:N1:=1+halfN:itermax:=2*halfN+1:

x[0]:=-3:y[0]:=-2:

# Ramp w11 up.

for n from 0 to halfN do

w11:=start-n*Max/halfN:

x[n+1]:=evalf(b1+w11*tanh(x[n])+w12*tanh(0.3*y[n])):
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y[n+1]:=evalf(b2+w21*tanh(x[n])):

end do:

with(plots):

points:=[[start-j*Max/N1,x[j]]$j=0..halfN]:

P1:=pointplot(points,style=point,symbol=point,color=blue,axes=BOXED,

font=[TIMES,ROMAN,15]):

# Ramp w11 udown.

for n from N1 to itermax do

w11:=(n-N1)*Max/halfN:

x[n+1]:=evalf(b1+w11*tanh(x[n])+w12*tanh(0.3*y[n])):

y[n+1]:=evalf(b2+w21*tanh(x[n])):

end do:

points:=[[start+(j-N1)*Max/N1,x[N1+j]]$j=0..halfN]:

P2:=pointplot(points,style=point,symbol=point,color=blue,axes=BOXED,

font=[TIMES,ROMAN,15]):

display({P1,P2},labels=[’w11’,’x[n]’]);

17.6 Exercises
1. For the following activation functions, show that

(a) if φ(v) = 1/(1 + e−av), then φ′(v) = aφ(v)(1 − φ(v));

(b) if φ(v) = a tanh(bv), then φ′(v) = b
a
(a2 − φ2(v));

(c) if φ(v) = 1
2a

log cosh(a(v+1))
cosh(a(v−1))

, then

φ′(v) = (tanh(a(v + 1)) − tanh(a(v − 1)))/2.

2. Prove Theorem 2, showing that when the activation function is nonlinear,
say, yk = φ (vk), the generalized delta rule can be formulated as

wkj (n + 1) = wkj (n) − ηgkj ,

where

gkj = (yk − tk)
∂φ

∂vk

xj .

3. By editing the programs listed in Section 17.5:

(a) Investigate what happens to the mean squared error for varying eta
values of your choice.

(b) Investigate what happens to the mean squared error as the number of
hidden neurons increases to five.
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4. Use another data set of your choice from the URL http://www.ics.uci.edu/
∼mlearn/MLRepository.html using an edited version of the programs listed
in Section 17.5 to carry out your analysis.

5. (a) Prove Theorem 3 regarding Lyapunov functions of continuous Hopfield
models.

(b) Consider the recurrent Hopfield network modeled using the differential
equations

ẋ = −x + 7

(
2

π
tan−1

(γπx

2

))
+ 6

(
2

π
tan−1

(γπy

2

))
,

ẏ = −y + 6

(
2

π
tan−1

(γπx

2

))
− 2

(
2

π
tan−1

(γπy

2

))
.

Plot a vector field portrait and derive a suitable Lyapunov function.

(c) Plot surface plots for the Lyapunov functions for Examples 3 and 4 and
Exercise 5(b). Plot the surfaces for |ai | ≤ 1, i = 1, 2.

6. Consider the discrete Hopfield model investigated in Example 5. Test the
vector x7 = (−1, −1, 1, 1, 1)T , update in the following orders, and deter-
mine to which vector the algorithm converges:

(a) x3(1), x4(1), x5(1), x2(1), x1(1);

(b) x1(1), x4(1), x3(1), x2(1), x5(1);

(c) x5(1), x3(1), x2(1), x1(1), x4(1);

(d) x3(1), x5(1), x2(1), x4(1), x1(1).

7. Add suitable characters “3” and “5” to the fundamental memories shown in
Figure 17.12. You may need to increase the grids to 10 × 10 and work with
100 neurons.

8. A simple model of a neuron with self-interaction is described by Pasemann
[12]. The difference equation is given by

an+1 = γ an + θ + wσ(an), 0 ≤ γ < 1,

where an is the activation level of the neuron, θ is a bias, w is a self-weight,
γ represents dissipation in a neuron, and the output is given by the sigmoidal
transfer function

σ(x) = 1

1 + e−x
.
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(a) Determine an equation for the fixed points of period one and show that
the stability condition is given by |γ +wσ ′(a)| < 1, where a is a fixed
point of period one.

(b) Show that the system is bistable in the region bounded by the parametric
equations

θ(a) = (1 − γ )a − (1 − γ )

(1 − σ(a))
, w(a) = (1 − γ )

σ ′(a)
.

(c) Show that the system is unstable in the region bounded by the para-
metric equations

θ(a) = (1 − γ )a + (1 + γ )

(1 − σ(a))
, w(a) = − (1 + γ )

σ ′(a)
.

(d) Use the first iterative method to plot a bifurcation diagram when θ = 4
and w = −16 for 0 < γ < 1.

(e) Use the second iterative method to plot a bifurcation diagram when
θ = −2.4 and γ = 0 for 3 < w < 7. Ramp w up and down.

9. Consider the neuromodule defined by the equations

xn+1 = 2 + 3.5 tanh(x) − 4 tanh(0.3y), yn+1 = 3 + 5 tanh(x).

Iterate the system and show that it is quasiperiodic.

10. Use the OGY method to control chaos in the minimal chaotic neuromodule.
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18
Simulation

Aims and Objectives
• To model, simulate, and analyze dynamical systems using Simulink and

MapleSim.

• To create blocks using the MapleSim Connectivity Toolbox.

On completion of this chapter the reader should be able to

• build block diagrams using a graphical user interface (GUI);

• run simulations and see how they are affected by input and parameter changes;

• analyze simulation results;

• use Maple to create blocks to be used within Simulink.

Note that in order to use MapleSim, Maple 13.02, or a later version, must be
installed and activated on your computer, and to use the MapleSim Connectivity
Toolbox you must have MapleSim on your computer. The MapleSim Connectivity
Toolbox requires MATLAB 2007b or later, Simulink 7.0 or later and the latest
versions of Maple and MapleSim. Simulink and MATLAB are registered trade-
marks of The MathWorks, Inc. The MapleSim and Simulink packages are used
extensively by engineers and researchers around the world. They are easy to use
and it is the closest one can get to experimentation without the need for expensive
laboratories and physical apparatus.

S. Lynch, Dynamical Systems with Applications using MapleTM  

© Birkhäuser  Boston, a part of Springer Science+Business Media, LLC 2010 
, DOI 10.1007/978-0-8176-4605-9_19,  
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This chapter is intended to introduce the reader to simple Simulink and
MapleSim packages using models referred to in earlier sections of the book. Note
that in order to use Simulink you must have MATLAB. The first section of the
chapter is an introduction to the latest version of Simulink and the second half
provides an introduction to the MapleSim Connectivity Toolbox and MapleSim.

18.1 Simulink
The author recommends that you download the working Simulink models before
attempting to write your own from scratch. There are examples from electric cir-
cuits, mechanics,, nonlinear optics, and chaos control and synchronization—topics
that have all been covered in earlier chapters of this book. Most of the results of
the simulations have been displayed in earlier chapters of this book using Maple
and it is easy to compare the results. The main advantages of using Simulink and
MapleSim are listed below:

• The absence of formal programming.

• They are used extensively in industry.

• You can change parameters easily and quickly rerun the simulation.

• You can change the input to see how it affects the output.

• They encourage you to try new things—like adding a bit of noise.

• They are interactive and fun.

To start Simulink, type simulink in the MATLAB command window after the
>>prompt. A window of the Simulink Library Browser will appear on your screen.
On Microsoft Windows, a list of icons entitled ‘Continuous’, ‘Discontinuous’,
‘Discrete’ etc., appears in the right hand column of the Simulink Library Browser
window. (A similar window opens in UNIX). To open one of these subsystems
simply double-click on the relevant icon. For example, the ‘Integrator’ block is the
second listed under the ‘Continuous’ subsystem.

To create a Simulink model file, click on File, New, and Model in the toolbars
at the top of the Simulink Library Browser menu. All Simulink model files have
the extension .mdl, so you could call your first file Simulink1.mdl, for example.
Simply click on a block icon, hold the mouse button down, and drag the block
into the Simulink1.mdl window and release the mouse button. You can drag other
blocks over to the model window and then start to connect them. To connect blocks,
simply click on the mouse button at a port and drag the line to another port before
releasing the mouse button. Once the blocks are connected you can parameterize
the model by double-clicking on the relevant blocks.A simulation is run by clicking
on Simulation and Start in the toolbars at the top of the model window. Simulation
parameters can also be changed under the Simulation toolbar. For example, the
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choice between a continuous and discrete simulation and the length of time that
the simulation is to be run can be altered here.

The blocks used in this chapter are listed in Figures 18.1 and 18.2 with a short
description of what each one does. Of course, there are many more Simulink blocks
not listed here, and the reader should use the extensive online documentation for
further information.

MATLAB files from the author’s book [4] along with all of the Simulink mod-
els can be downloaded from theWeb at the MathWorks site: http://www.mathworks.
com/matlabcentral/.

Integrator: Continuous−time integration of the input signal.

Memory: Apply a discrete one integration step delay.

Gain: Element−wise gain (y=k.*u) or matrix gain (y=k*u).

Polynomial: See MATLAB’s polyval function. e.g. x^3=(1,0,0,0).

Product: Multiply or divide inputs.

Sum: Add or subtract inputs.

Demux: Split vector into scalars.

Product

P(u)
O(P) = 3

Polynomial

Memory

1
s

Integrator

k

Gain

em

Figure 18.1: Simulink blocks taken from the ‘Continuous’, ‘Discrete’, ‘Math Op-
erations’, and ‘Signal Routing’ subsystems. Note that the blocks may look slightly
different in other versions of Simulink.
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Scope: Shows output of simulink model as time series.

XY Graph: First input used as time base. 
Enter plotting ranges.

Constant: Set a constant value.

Ramp: Output a ramp signal starting at a specified time.

Signal Builder: Build your own input signal.

Sine Wave: Specify the frequency and phase angle.

Function: Use "u" as input variable name.
E.g. 1−u*u.

XY Graph

Sine Wave

Signal 1

Signal Builder

Scope

Ramp

f(u)

Fcn

1

Constant

Figure 18.2: Simulink blocks taken from the ‘Sinks’, ‘Sources’, and ‘User-Defined
Functions’ subsystems.

Remember to double-click on the blocks to set continuous or discrete simula-
tion, step-lengths, numerical procedures, tolerances, initial conditions, simulation
parameters, and the length of time the simulation is to run.

Continuous systems using differential equations are considered first. Electric
circuits, including the van der Pol oscillator, are simulated in Examples 1 to 3,
and a nonlinear periodically driven pendulum is modeled in Example 4. Discrete
systems are considered in Examples 5 and 6, triangular and Gaussian pulses are
input to an SFR resonator and chaos is controlled using a simple feedback of the
electric field. Finally, continuous systems are returned to using the Lorenz system
and chaos synchronization in Examples 7–9.
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Electric Circuits. Electric circuits were introduced in Chapter 1 when considering
differential equations. The first two Simulink models are taken from this chapter.
The van der Pol oscillator is also modeled here.

Example 1. A series resistor-inductor electrical circuit is modeled using the dif-
ferential equation

dI

dt
+ 0.2I = 5 sin(t).

Create a Simulink model to simulate this simple electric circuit.

Solution. The Simulink model is given in Figure 18.3. Double-click on the Sine
Wave block and enter Sine type: Time based, Amplitude: 5, and Frequency: 1.
Double-click on the Integrator block and enter Initial condition: 0. Click on
Simulation and Start in the toolbar. Double-click on the Scope to see the solu-
tion. Click on the binoculars in the Scope window to centralize the image. From
Example 9 in Chapter 1, the analytic solution is

I (t) = 25

26
sin(t) − 125

26
cos(t) + 125

26
e− t

5 .

I’(t)=E(t)−0.2I(t)

Scope

1
s

IE(t)

0.2

0.2I

Figure 18.3: Simulink model of a series resistor-inductor circuit.

Example 2. The second-order differential equation used to model a series RLC
circuit is given by

d2I

dt2 + 5
dI

dt
+ 6I = 10 sin(t).

Simulate this circuit using Simulink.

Solution. The Simulink model is given in Figure 18.4. Double-click on the blocks
to set up the model as in Example 1. From Example 10 in Chapter 1, the solution is

I (t) = 2e−2t − e−3t + sin(t) − cos(t).
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I’’(t)=E’(t)−5I’(t)−6I(t)

Scope

1
s

I’

1
s

I

E’(t)

6

6I

5

5I’

Figure 18.4: Simulink model of a series RLC circuit.

Example 3. The van der Pol equation

ẍ + µ(x2 − 1)ẋ + x = 0,

may be written as a planar system of the form

ẋ = y, ẏ = −x − µ(x2 − 1)y.

Use Simulink to produce a phase portrait of this system when µ = 5.

Solution. A Simulink model is shown in Figure 18.5. A phase portrait is shown in
Figure 4.2 in Chapter 4.

Mechanical System. Consider the following example.

x’’(t)=−x(t)+mu(1−(x(t))^2)x’(t)

The van der Pol oscillator

1
s

x’

1
s

x
5

mu

XY Graph
Product

1−u*u

1−x^2

Figure 18.5: Simulink model of a van der Pol oscillator. A phase portrait is plotted
in the XY Graph block.
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Example 4. Simulate the motion of a mass, suspended from a nonlinear pendulum
when it is subject to a periodic force.

Solution. A schematic of the mechanical system is shown in Figure 8.8 in Chap-
ter 8.

x’’(t)=x(t)−kx’(t)−(x(t))^3+F(t) P(u)
O(P) = 3

x^3

1
s

x’

1
s

x

0.3

k

Scope

F(t)

0.5

Amplitude

Figure 18.6: Simulink model of the Duffing equation.

The differential equation used to model this system was introduced in Chap-
ter 8. The Duffing equation is given by

ẍ + kẋ + (x3 − x) = A cos(ωt),

where x measures displacement, k is a damping coefficient, ω is a frequency, and A

is the amplitude of vibration of the forcing term. A Simulink model of this system
is displayed in Figure 18.6.

Nonlinear Optics. The nonlinear SFR resonator was investigated in Section 14.3.
It was shown that the electric field circulating in the loop can be modeled by the
discrete complex iterative equation

En+1 = A + BEn exp[i(|En|2 + φL)],
where En is the electric field at the nth circulation in the ring, A is the input, B is
related to the fiber coupling ratio, and φL is a linear phase shift due to propagation.

Example 5. Model the SFR resonator with a triangular input pulse using 1000
iterations and a maximum input of 9 Wm−2. Set B = 0.15 and φL = 0 in this
simulation.

Solution. A Simulink model is shown in Figure 18.7. Note that the input is square
rooted as it is an input power.

For this simulation set Stop time: 1000, Type fixed step: discrete, and Fixed
step size: 1. The input versus output powers may be observed by double-clicking
on the Scope and then clicking on the binoculars in the scope window. The input
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Simple Fiber Ring Resonator

Signal 1

Tent Input

Scope

Product2

Product1

Memory

eu

Math
Function

|u|2

Intensity

sqrt(u)

Function

j

Constant

0.15

B

Figure 18.7: An SFR resonator with a triangular input pulse.

pulse can be easily changed to a Gaussian using a function block. A Simulink
model can be downloaded from the MathWorks Website.

Example 6. Use feedback of a proportion of the electric field to control the chaos
in an SFR resonator when B = 0.15, A = 2.7, and φL = 0.

Solution. A constant input of |A|2 = 7.29 Wm−2 is input to the fiber ring. By
changing the gain in the control section of the Simulink model (Figure 18.8), one
can obtain different steady states.

Control Section

Simple Fiber Resonator

Scope

Product2

Product1

Memory2

Memory1

eu

Math
Function

|u|2

Intensity

0.3
Gain

j

Constant
0.15

B

2.7

A

Figure 18.8: Chaos control in an SFR resonator.

Note that the output signal in the Scope window is chaotic when the gain in
the control section is set to zero.
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Chaos Synchronization. The Lorenz system of ODEs was introduced in Sec-
tion 7.4. The Simulink model displayed in Figure 18.9 can be edited to model
other continuous three-dimensional systems such as Chua’s circuit, the Belousov-
Zhabotinski reaction, and the Rössler system. The strange attractor can be viewed
by clicking in the XY Graph block. Note that this is a two-dimensional plot of the
strange attractor.

Example 7. Create a Simulink model of the Lorenz system.

Solution. A Simulink model is shown in Figure 18.9.

The Lorenz System

1

Out1u(1)*u(2)−(8/3)*u(3)

zdot

28*u(1)−u(2)−u(1)*u(3)

ydot

10*(u(2)−u(1))

xdot

XY Graph
Mux

1
s

Integrator

em

Demux

Figure 18.9: A Simulink model of the Lorenz system.

Example 8. Create a Simulink model displaying chaos synchronization between
two Lorenz systems.

Solution. A Simulink model is shown in Figure 18.9. Chaos synchronization be-
tween two Lorenz systems is demonstrated using Simulink in Figure 18.10. The
two systems start with different initial conditions but after a short interval of time,
they begin to synchronize.

Example 9. Create a Simulink model displaying generalized synchronization.

Solution. Finally, Figure 18.11 shows the Simulink model for generalized syn-
chronization using a Rössler system as the driver, a Lorenz system as the response,
and a Lorenz system as the auxiliary. The reader is referred to Section 16.4 for
more details.

18.2 The MapleSim Connectivity Toolbox
Early in 2009, Maplesoft announced the release of the MapleSim Connectiv-
ity Toolbox, a mathematical modeling environment offering automated export to
Simulink. Using the S-Function generation capability, users can export dynamic
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Lorenz Synchronization

4

Out4
3

Out3

2

Out2

1

Out1

u(1)*u(2)−(8/3)*u(3)

zdot1

u(1)*u(2)−(8/3)*u(3)

zdot

28*u(1)−u(2)−u(1)*u(3)

ydot1

28*u(1)−u(2)−u(1)*u(3)

ydot

10*(u(2)−u(1))

xdot1

10*(u(2)−u(1))

xdot

XY Graph

Mux2

Mux1

Mux

1
s

Integrator1

1
s

Integrator

em

Demux2

em

Demux1

em

Demux

Figure 18.10: Chaos synchronization between two Lorenz systems.

system models and analytical algorithms to Simulink as a fully encapsulated block
that can be readily incorporated into a Simulink model diagram. The MapleSim
Connectivity Toolbox contains a data structure called system object that encapsu-
lates the properties of a dynamic system. This data structure contains information
such as, description of the system, description of the inputs, and sampling time
(if the system is discrete). Different types of systems can be created: differential
or difference equations, transfer functions, and state-space zero/pole/gain models.
Users can create multi-input and multi-output Simulink blocks.

In order to generate an S-function block, the following components must
be set up and functioning correctly: a Maple-MATLAB link and MATLAB mex
compiler. To communicate with MATLAB and Simulink the Maple-MATLAB link
must operate correctly. To test whether the link operates correctly, in Maple, type
the command Matlab[evalM]("simulink". If successful, the link is set up correctly.
If an error is raised, follow the instructions in MATLAB[setup] to configure the
link. This needs to be done only once. For the generated code to compile correctly,
the MATLAB mex compiler must be set up correctly. To set up this command, start
MATLAB and run the following command: mex -setup. Follow the instructions
and select a C compiler from the given list. For more information the reader should
also type ?Connectivity[setup] in the Maple worksheet. Listed below are three
simple examples for producing Simulink blocks.
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Generalized Synchronization

Rössler parameters
a = 0.2
b = 0.2
c = 5.7

x1dot

x2dot

x3dot

x2

x1

Lorenz system response

Lorenz system auxiliary

Lorenz parameters
sigma = 16
rho = 45.92
beta = 4

Rossler system driver

Synchronization is shown in Figure 1

z3 Out

9

z2 Out

8

z1 Out

7

y3 Out

6

y2 Out

5

y1 Out

4

x3 Out

3

x2 Out

2

x1 Out

1

zdot 3

u(2)*u(3 )−4*u(4 )

zdot 2

−u(2)*u(4)+45 .92 *u(2)−u(3)

zdot 1

16 *(u(3 )−u(2))−8*(u(2 )−u(1))

zdot

ydot

y3dot

u(2)*u(3 )−4*u(4 )

y2dot

−u(2)*u(4)+45 .92 *u(2)−u(3)

y1dot

16 *(u(3 )−u(2))−8*(u(2 )−u(1))

xdot

x3dot

0.2+u(3)*(u(1)−5 .7)

x2dot

u (1)+0.2*u(2 )

x1dot

−u(2)−u(3)

XY Graph

Integrate _zdot

1
s

Integrate _ydpot

1

s

Integrate _xdot

1
s

mu

mu

mu
ydot

xdot

x

y 3dot

y 2dot

y 1dot

zdot

x3

z3

y 3

y 1

z1

z2

y 2

y

z

zdot1

zdot2

zdot3

Figure 18.11: Generalized synchronization between a Rössler system and two
Lorenz systems.

Example 10. Create a Simulink block for the differential equation, di
dt

+ ai = bu,
where a = 0.2 and b = 5 are constants, u(t) is the input, and i(t) is the output.
The block should have one input port and one output port.

Solution. The Maple commands are listed below:

> restart:with(DynamicSystems):with(Connectivity):

> sys1:=[diff(i(t),t)+a*i(t)=b*u(t)];

> params:=[a=0.2,b=5]:

> sys2:=DiffEquation(sys1,[u(t)],[i(t)]);

> ResponsePlot(sys2,Step(),parameters=params);

> # The following creates an S-function, called "MyTransferFunction", and

> # makes it available in the Simulink library.

> (cSFcn,MBlock):=Simulink(sys2,sys2:-inputvariable,sys2:-outputvariable,

"MyTransferFunction",parameters=params):

> SaveCode("MyTransferFunction",cSFcn,extension="c",interactive=true):

> SaveCode("MyTransferFunction",MBlock,extension="m",interactive=true):



438 18. Simulation

Example 11. Create a Simulink block for the differential equation, md2y

dt2 +b
dy
dt

+
ky = u, where m = 5, b = 2, and k = 3 are constants, u(t) is the input, y(t) is the
output, and dy

dt
(0) = 0, y(0) = 2. The block should have one input port and one

output port.

Solution. The Maple commands are listed below:

> with(Connectivity);

par:=[m=5,b=2,k=3];

ic:=[y(0)=2,(D(y))(0)=0];

de:=m*(diff(y(t),t,t))+b*(diff(y(t),t))+k*y(t)=u(t);

sys1:=DynamicSystems:-DiffEquation(de,inputvariable=[u(t)],

outputvariable=[y(t)]);

ResponsePlot(sys1,Step(),parameters=par);

> # The following creates an S-function, called "MyTransferFunction", and

> # makes it available in the Simulink library.

> (cSFcn,MBlock):=Simulink(sys1,sys1:-inputvariable,sys1:-outputvariable,

"MyTransferFunction",parameters=params,initialconditions=ic):

> SaveCode("MyTransferFunction",cSFcn,extension="c",interactive=true):

> SaveCode("MyTransferFunction",MBlock,extension="m",interactive=true):

Example 12. Create a Simulink block for the differential equations,

m
d2y1

dt2 + b
d

dt
(y1 + y2) + ky1 = u1, m

d2y2

dt2 + b
dy1

dt
+ ky2 = u2,

where m = 5, b = 2, and k = 3 are constants, u1(t), u2(t) are the inputs,
y1(t), y2(t) are the outputs, and dy1

dt
(0) = 0, y1(0) = 2,

dy2
dt

(0) = 0, y2(0) = 2.
The block should have two input ports and two output ports.

Solution. The Maple commands are listed below:

> par:=[m=5,b=2,k=3];

ic:=[y1(0)=2,(D(y1))(0)=0,y2(0)=2,(D(y2))(0)=0];

de:=[m*(diff(y1(t),t,t))+b*(diff(y1(t)+y2(t),t))+k*y1(t)=u1(t),

m*(diff(y2(t),t,t))+b*(diff(y1(t),t))+k*y2(t)=u2(t)];

sys2:=DynamicSystems:-DiffEquation(de,inputvariable=[u1(t),u2(t)],

outputvariable=[y1(t),y2(t)]);

ResponsePlot(sys2,[Step(),2*Step()],parameters=par);

> # The following creates an S-function, called "MyTransferFunction", and

> # makes it available in the Simulink library.

> (cSFcn,MBlock):=Simulink(sys2,sys2:-inputvariable,sys2:-outputvariable,

"MyTransferFunction",parameters=params,initialconditions=ic):

> SaveCode("MyTransferFunction",cSFcn,extension="c",interactive=true):

> SaveCode("MyTransferFunction",MBlock,extension="m",interactive=true):
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When the Simulink Block Generation for Dynamic-Systems pops up simply
click on the Model button in the Generate Simulink Block section. A Simulink
block is created that can be incorporated into a Simulink model.

The reader should consult the MapleSim Connectivity Toolbox documenta-
tion supplied by Maplesoft for more detailed explanations, and examples are listed
on the authors web pages.

18.3 MapleSim
This section provides a very brief introduction to MapleSim. As Maplesoft quote:

“MapleSim is a complete environment for modeling and simulating
complex multi-domain physical systems. It allows one to build com-
ponent diagrams that represent physical systems in a graphical form.
Using both symbolic and numeric approaches, MapleSim automati-
cally generates model equations from a component diagram and runs
high-fidelity simulations.

Physical modeling, or physics-based modeling, incorporates math-
ematics and physical laws to describe the behavior of an engineering
component or a system of interconnected components. Since most en-
gineering systems have associated dynamics, the behavior is typically
defined with ordinary differential equations (ODEs).

One can use MapleSim to build physical models that integrate
components from various engineering fields into a complete system.
MapleSim features a library of over 300 modeling components, includ-
ing electrical, mechanical, and thermal devices; sensors and sources;
and signal blocks. One can also create custom components to suit ones
modeling and simulation needs.”

To help the user develop physical models quickly and easily, MapleSim pro-
vides topological or acausal system representation, where components are con-
nected without having to consider how signals flow between them. MapleSim
also provides causal system representation like the system flow approach used
in Simulink.Examples of both representations are presented for a simple resistor-
inductor circuit and a simple mass-spring damper.

Example 13. Create acausal and causal MapleSim models of the resistor-inductor
electrical circuit of Example 11 in Chapter 1. Run the simulations and plot the
results.

Solution. Figures 18.12 and 18.13 show the MapleSim models and Figure 18.14
displays the output when the simulation is run.

Example 14. This example is taken from the MapleSim Help pages and simulates
a mass-spring damper.
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Figure 18.12: Acausal model of the RL circuit.

Figure 18.13: Causal model of the RL circuit.

Solution. Figure 18.15 shows the acausal and causal MapleSim models and Figure
18.16 displays the output when the simulation is run.

Example 15. Create a MapleSim model of the Rössler system from Section 7.3
and plot graphs for the outputs of x, y, and z.

Solution. Figure 18.17 shows the MapleSim model and Figure 18.18 displays the
output graphs. More MapleSim models can be downloaded from the Application



18.4. Exercises 441

Figure 18.14: Probe 1 gives the output of the circuit.

Figure 18.15: Acausal and causal models of a mass-spring damper.

Center and the author will post more examples on the book’s website in due course.

18.4 Exercises
1. Change the input in Example 1 from E(t) = 5 sin(t) to E(t) = 10 sin(t+ π

3 )

and run the Simulink model in Figure 18.3 when I (0) = 0.

2. Change the input in Example 2 from E′(t) = 10 sin(t) to E′(t) = sin(4t),
I (0) = İ (0) = 0. Run the Simulink model displayed in Figure 18.4.

3. Create Simulink and MapleSim models to simulate the RLC circuit modeled
by the differential equation
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Figure 18.16: Probe 1 gives the output of the mass-spring damper.

Figure 18.17: MapleSim model of the Rössler system.

d2I

dt2 + 3
dI

dt
+ 2I = 5 sin(t + π/4),

where I (0) = İ (0) = 0.

4. Use the Simulink model shown in Figure 18.5 to plot a phase portrait for the
van der Pol oscillator when

(i) µ = 0.1;

(ii) µ = 1;
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(a) (b) (c)

Figure 18.18: Output of the Rössler simulation: (a) x output; (b) y output; (c) z

output.

(iii) µ = 20.

5. Consider the periodically driven nonlinear pendulum simulated in Figure
18.6. Run the simulation when k = 0.3, ω = 1.25, and the driving force is
0.31 cos(ωt). How would you describe this behavior?

6. Run the same simulation as in Exercise 5 but with a driving force of
0.5 cos(ωt). How would you describe this behavior?

7. Consider the Duffing equation in Example 4 with k = 0.1, ω = 1.25, and
A = 0.07. Run the simulation for the initial conditions:

(i) x(0) = 1.16 and ẋ(0) = 0.112;

(ii) x(0) = 0.585 and ẋ(0) = 0.29.

What can you say about the system?

8. Consider the simulation of the SFR resonator with a tent input pulse shown
in Figure 18.7. Change the maximum of the input intensity and see how the
image on the scope is affected. Double-click on the Signal 1 block to change
the maximum input intensity. It is initially set at 9. Add a small amount of
noise to the input and see how it affects the output.

9. Change the input signal in Figure 18.7 from a tent pulse to a Gaussian pulse
and run the simulation.

10. Use Simulink or MapleSim to demonstrate synchronization of chaos in
Chua’s circuit.



444 18. Simulation
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Examination-Type Questions

19.1 Dynamical Systems with Applications
Typically, students would be required to answer five out of 8 questions in three
hours. The examination would take place without access to a mathematical package.
The student will require a calculator and graph paper.

1. (a) Sketch a phase portrait for the following system showing all isoclines:

dx

dt
= 3x + 2y,

dy

dt
= x − 2y.

[6]

(b) Show that the system

dx

dt
= xy − x2y + y3,

dy

dt
= y2 + x3 − xy2

can be transformed into

dr

dt
= r2 sin(θ),

dθ

dt
= r2 (cos(θ) − sin(θ)) (cos(θ) + sin(θ))

using the relations rṙ = xẋ + yẏ and r2θ̇ = xẏ − yẋ. Sketch a phase
portrait for this system given that there is one nonhyperbolic critical
point at the origin.

[14]

S. Lynch, Dynamical Systems with Applications using MapleTM  

© Birkhäuser  Boston, a part of Springer Science+Business Media, LLC 2010 
, DOI 10.1007/978-0-8176-4605-9_20,  
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2. (a) Prove that the origin of the system

dx

dt
= −x

2
+ 2x2y,

dy

dt
= x − y − x3

is asymptotically stable using the Lyapunov function V = x2 + 2y2.
[6]

(b) Solve the differential equations

dr

dt
= −r2,

dθ

dt
= 1,

given that r(0) = 1 and θ(0) = 0. Hence, show that the return map,
say, P, mapping points, say, rn, on the positive x-axis to itself is given
by

rn+1 = P (rn) = rn

1 + 2πrn
.

[14]

3. (a) Find the eigenvalues of the following system and sketch a phase portrait
in three-dimensional space

dx

dt
= −2x − z,

dy

dt
= −y,

dz

dt
= x − 2z.

[12]

(b) Show that the origin of the following nonlinear system is not hyper-
bolic:

dx

dt
= −2y + yz,

dy

dt
= x − xz − y3,

dz

dt
= xy − z3.

Prove that the origin is asymptotically stable using the Lyapunov func-
tion V = x2 + 2y2 + z2. What does asymptotic stability imply for a
trajectory γ (t) close to the origin?

[8]

4. (a) Consider the two-dimensional system

dr

dt
= r (µ − r)

(
µ − r2

)
,

dθ

dt
= −1.

Show how the phase portrait changes as the parameter µ varies and
draw a bifurcation diagram.

[10]

(b) Prove that none of the following systems has a limit cycle:
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(i) dx
dt

= y − x3,
dy
dt

= x − y − x4y;

(ii) dx
dt

= y2 − 2xy + y4,
dy
dt

= x2 + y2 + x3y3;

(iii) dx
dt

= x + xy2,
dy
dt

= x2 + y2.
[10]

5. (a) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =
{ 7

4x 0 ≤ x < 1
2

7
4 (1 − x) 1

2 ≤ x ≤ 1.

Determine the fixed points of periods one, two, and three.
[12]

(b) Determine the fixed points of periods one and two for the complex
mapping

zn+1 = z2
n − 3.

Determine the stability of the fixed points of period one.
[8]

6. (a) Starting with an equilateral triangle (each side of length 1 unit) con-
struct the inverted Koch snowflake up to stage 2 on graph paper.At each
stage, each segment is 1

3 the length of the previous segment, and each
segment is replaced by four segments. Determine the area bounded by
the true fractal and the fractal dimension.

[14]

(b) Prove that

D1 = lim
l→0

∑N
i=1 pi ln(pi)

− ln(l)

by applying L’Hopital’s rule to the equation

Dq = lim
l→0

1

1 − q

ln
∑N

i=1 p
q
i (l)

− ln l
.

[6]

7. (a) Find and classify the fixed points of period one of the Hénon map
defined by

xn+1 = 1 − 9

5
x2
n + yn yn+1 = 1

5
xn.

[8]
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(b) Consider the complex iterative equation

En+1 = A + BEn exp
(
i |En|2

)
.

Derive the inverse map and show that

d|A|2
d|ES |2 = 1 + B2 + 2B

(
|ES |2 sin |ES |2 − cos |ES |2

)
,

where ES is a steady-state solution.
[12]

8. (a) A four-neuron discrete Hopfield network is required to store the fol-
lowing fundamental memories:

x1 = (1, 1, 1, 1)T , x2 = (1, −1, 1, −1)T x3 = (1, −1, −1, 1)T .

(i) Compute the synaptic weight matrix W.
(ii) Use asynchronous updating to show that the three fundamental

memories are stable.
(iii) Test the vector (−1, −1, −1, 1)T on the Hopfield network.

Use your own set of random orders in (ii) and (iii).
[10]

(b) Derive a suitable Lyapunov function for the recurrent Hopfield network
modeled using the differential equations

ẋ = −x +
(

2

π
tan−1

(γπx

2

))
+

(
2

π
tan−1

(γπy

2

))
+ 6,

ẏ = −y +
(

2

π
tan−1

(γπx

2

))
+ 4

(
2

π
tan−1

(γπy

2

))
+ 10.

[10]

19.2 Dynamical Systems with Maple
Typically, students would be required to answer five out of eight questions in
3 hours. The examination would take place in a computer laboratory with access
to Maple.

1. (a) The radioactive decay of polonium-218 to bismuth-214 is given by

218Po → 214Pb → 214Bi,

where the first reaction rate is k1 = 0.5 s−1 and the second reaction
rate is k2 = 0.06 s−1.
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(i) Write down the differential equations representing this system.
Solve the ODEs.

(ii) Determine the amount of each substance after 20 seconds given
that the initial amount of 218Po was one unit. Assume that the
initial amounts of the other two substances was zero.

(iii) Plot solution curves against time for each substance.
(iv) Plot a trajectory in three-dimensional space.

[14]

(b) Plot the limit cycle of the system

dx

dt
= y +0.5x(1−0.5−x2 −y2),

dy

dt
= −x +0.5y(1−x2 −y2).

Find the approximate period of this limit cycle.
[6]

2. (a) Two solutes X and Y are mixed in a beaker. Their respective concen-
trations x(t) and y(t) satisfy the following differential equations:

dx

dt
= x − xy − µx2,

dy

dt
= −y + xy − µy2.

Find and classify the critical points for µ > 0 and plot possible phase
portraits showing the different types of qualitative behavior. Interpret
the results in terms of the concentrations of solutes X and Y .

[14]

(b) Determine the Hamiltonian of the system

dx

dt
= y,

dy

dt
= x − x2.

Plot a phase portrait.
[6]

3. (a) For the system

dx

dt
= µx + x3,

dy

dt
= −y

sketch phase portraits for µ < 0, µ = 0, and µ > 0. Plot a bifurcation
diagram.

[10]

(b) Plot a phase portrait and Poincaré section for the forced Duffing system

dx

dt
= y,

dy

dt
= x − 0.3y − x3 + 0.39 cos(1.25t).

Describe the behavior of the system.
[10]
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4. (a) Given that f (x) = 3.5x(1 − x),

(i) plot the graphs of f (x), f 2(x), f 3(x) and f 4(x);
(ii) approximate the fixed points of periods one, two, three, and four,

if they exist;
(iii) determine the stability of each point computed in part (ii).

[14]

(b) Use Maple to approximate the fixed points of periods one, two, and
three for the complex mapping zn+1 = z2

n + 2 + 3i.
[6]

5. (a) Find and classify the fixed points of period one for the Hénon map

xn+1 = 1.5 + 0.2yn − x2
n, yn+1 = xn.

Find the approximate location of fixed points of period two if they
exist. Plot a chaotic attractor using suitable initial conditions.

[14]

(b) Using the derivative method, compute the Lyapunov exponent of the
logistic map xn+1 = µxn(1 − xn) when µ = 3.9.

[6]

6. (a) Edit the given program for plotting a bifurcation diagram for the logistic
map (see Chapter 12) to plot a bifurcation diagram for the tent map.

[10]

(b) Write a program to plot a Julia set J (0, 1.3) for the mapping zn+1 =
z2
n + 1.3i.

[10]

7. (a) Given the complex mapping En+1 = A + BEne
i|En|2 , determine the

number and approximate location of fixed points of period one when
A = 3.2 and B = 0.3.

[10]

(b) Edit the given program for producing a triangular Koch curve (see
Chapter 13) to produce a square Koch curve.At each stage, one segment
is replaced by five segments and the scaling factor is 1

3 .
[10]

8. (a) A six-neuron discrete Hopfield network is required to store the follow-
ing fundamental memories:

x1 = (1, 1, 1, 1, 1, 1)T ,

x2 = (1, −1, 1, −1, −1, 1)T ,

x3 = (1, −1, −1, 1, −1, 1)T .
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(i) Compute the synaptic weight matrix W.

(ii) Use asynchronous updating to show that the three fundamental
memories are stable.

(iii) Test the vector (−1, −1, −1, 1, 1, 1)T on the Hopfield network.

Use your own set of random orders in (ii) and (iii).
[10]

(b) Derive a suitable Lyapunov function for the recurrent Hopfield network
modeled using the differential equations

ẋ = −x +2

(
2

π
tan−1

(γπx

2

))
, ẏ = −y +2

(
2

π
tan−1

(γπy

2

))
.

Plot a vector field plot and Lyapunov function surface plot for γ = 0.5.
[10]
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Solutions to Exercises

20.0 Chapter 0

1. (a) 3;

(b) 531441;

(c) 0.3090;

(d) 151;

(e) − 1
10 .

2. (a)

A + 4BC =
⎛
⎝ 57 38 19

40 25 16
35 19 14

⎞
⎠ .

(b)

A−1 =
⎛
⎝ 0.4 −0.6 0.2

0 1 0
−0.6 1.4 0.2

⎞
⎠ , B−1 =

⎛
⎝ 0 1 −1

2 −2 −1
−1 1 1

⎞
⎠ .

The matrix C is singular.

(c)

A3 =
⎛
⎝ −11 4 −4

0 1 0
12 20 −7

⎞
⎠ .

(d) Determinant of C = 0.

(e) Eigenvalues and corresponding eigenvectors are

λ1 = −0.3772, (0.4429, −0.8264, 0.3477)T ;

S. Lynch, Dynamical Systems with Applications using MapleTM  
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λ2 = 0.7261, (0.7139, 0.5508, −0.4324)T ;

λ3 = 3.6511, (0.7763, 0.5392, 0.3266)T .

3. (a) −1 + 3i;

(b) 1 − 3i;

(c) 1.4687 + 2.2874i;

(d) 0.3466 + 0.7854i;

(e) −1.1752i.

4. (a) 1; (b) 1
2 ; (c) 0; (d) ∞; (e) 0.

5. (a) 9x2 + 4x;

(b) 2x3√
1+x4

;

(c) ex(sin(x) cos(x) + cos2(x) −
sin2(x));

(d) 1 − tanh2 x;

(e) 2 ln xxln x

x .

6. (a) − 43
12 ;

(b) 1;

(c)
√

π ;

(d) 2;

(e) divergent.

7. See Section 0.3.

8. (a) y(x) = 1
2

√
2x2 + 2;

(b) y(x) = 6
x ;

(c) y(x) = (108x3+81)1/4

3 ;

(d) x(t) = −2e−3t + 3e−2t ;

(e) 16
5 e−2t − 21

10 e−3t − 1
10 cos t +

1
10 sin t .

9. (a) When x(0):=0.2, (b) when x(0):=0.2001,

x(91):=0.8779563852 x(91):=0.6932414820

x(92):=0.4285958836 x(92):=0.8506309185

x(93):=0.9796058084 x(93):=0.5082318360

x(94):=0.7991307420e-1 x(94):=0.9997289475

x(95):=0.2941078991 x(95):=0.1083916122e-2

x(96):=0.8304337709 x(96):=0.4330964991e-2

x(97):=0.5632540923 x(97):=0.1724883093e-1

x(98):=0.9839956791 x(98):=0.6780523505e-1

x(99):=0.6299273044e-1 x(99):=0.2528307406

x(100):=0.2360985855 x(100):=0.7556294285

10.
> # Euclid’s algorithm

a:=12348:b:=14238:

while b<>0 do

d:=irem(a,b):
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a:=b:b:=d:

end do:

lprint("The greatest common divisor is",a);

20.1 Chapter 1

1. (a) y = C
x ;

(b) y = Cx2;

(c) y = C
√

x;

(d) 1
y = ln

(
C
x

)
;

(e) y4

4 + x2y2

2 = C;

(f) y = Ce− 1
x .

2. The fossil is 8.03 × 106 years old.

3. (a) ḋ = kf (a0 − d)(b0 − d)(c0 − d) − kr (d0 + d);

(b) ẋ = kf (a0 − 3x)3 − krx, where a = [A], x = [A3], b = [B], c = [C], and
d = [D].

4. (a) The current is I = 0.733 amps;

(b) The charge is Q(t) = 50(1 − exp(−10t − t2)) coulombs.

5. (a) Time 1.18 hours.

(b) The concentration of glucose is

g(t) = G

100kV
− Ce−kt .

6. Set x(t) = ∑∞
n=0 antn.

7. The differential equations are

Ȧ = −αA, Ḃ = αA − βB, Ċ = βB.

8. The differential equations are

Ḣ = −aH + bI, İ = aH − (b + c)I, Ḋ = cI.

The number of dead is given by

D(t) = acN

(
α − β + βeαt − αeβt

αβ(α − β)

)
,

where α and β are the roots of λ2 + (a + b + c)λ + ac = 0. This is not realistic
as the whole population eventually dies. In reality, people recover and some are
immune.

9. (a) (i) Solution is x3 = 1/(1 − 3t), with maximal interval (MI) −∞ < t < 1
3 ;

(ii) x(t) = (et+3)/(3−et ), with MI −∞ < t < ln 3; (iii) x(t) = 6/(3−e2t ),
with MI −∞ < t < ln

√
3.

(b) Solution is x(t) = (t + x
1/2
0 − t0)2, with MI t0 − x

1/2
0 < t < ∞.
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20.2 Chapter 2
1. (a) Eigenvalues and eigenvectors are λ1 = −10, (−2, 1)T ; λ2 = −3, ( 3

2 , 1)T .
The origin is a stable node.

(b) Eigenvalues and eigenvectors are λ1 = −4, (1, 0)T ; λ2 = 2, (− 4
3 , 1)T . The

origin is a saddle point.

2. (a) All trajectories are vertical and there are an infinite number of critical points
on the line y = − x

2 .

(b) All trajectories are horizontal and there are an infinite number of critical points
on the line y = − x

2 .

(c) Eigenvalues and eigenvectors are λ1 = 5, (2, 1)T ; λ2 = −5, (1, −2)T . The
origin is a saddle point.

(d) Eigenvalues are λ1 = 3 + i, λ2 = 3 − i, and the origin is an unstable focus.

(e) There are two repeated eigenvalues and one linearly independent eigenvector:
λ1 = −1, (−1, 1)T . The origin is a stable degenerate node.

(f) This is a nonsimple fixed point. There are an infinite number of critical points
on the line y = x.

3. (a) ẋ = y, ẏ = −25x − µy;

(b) (i) unstable focus, (ii) center, (iii) stable focus, (iv) stable node;

(c) (i) oscillations grow, (ii) periodic oscillations, (iii) damping, (iv) critical damp-
ing.
The constant µ is called the damping coefficient.

4. (a) There is one critical point at the origin, which is a col. Plot the isoclines. The

eigenvalues are λ = −1±√
5

2 with eigenvectors
(

1
λ1

)
and

(
1
λ2

)
.

(b) There are two critical points at A = (0, 2) and B = (1, 0). A is a stable
focus and B is a col with eigenvalues and corresponding eigenvectors given

by λ1 = 1,
(

1−3

)
and λ2 = −2,

(
1
0

)
.

(c) There are two critical points at A = (1, 1) and B = (1, −1). A is an unstable
focus and B is a stable focus. Plot the isoclines where ẋ = 0 and ẏ = 0.

(d) There are three critical points at A = (2, 0), B = (1, 1), and C = (1, −1); A

is a col and B and C are both stable foci.

(e) There is one nonhyperbolic critical point at the origin. The solution curves are
given by y3 = x3 + C. The line y = x is invariant, the flow is horizontal on
ẏ = x2 = 0, and the flow is vertical on the line ẋ = y2 = 0. The slope of the

trajectories is given by dy
dx

= x2

y2 .

(f) There is one nonhyperbolic critical point at the origin. The solution curves are
given by y = x

1+Cx
. The line y = x is invariant.

(g) There is one nonhyperbolic critical point at the origin. The solution curves are

given by 2y2 = x4 + C. The slope of the orbits is given by dy
dx

= x3

y .
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(h) When µ < 0, there are no critical points. When µ = 0, the solution curves are

given by |x| = Ce
1
y . When µ > 0, there are two critical points at A = (0,

√
µ)

and B = (0, −√
µ); A is a col and B is an unstable node.

5. One possible system is

ẋ = y2 − x2, ẏ = x2 + y2 − 2,

for example.

6. There are three critical points at O = (0, 0), A = (1, 0), and B = (−1, 0). If
a0 > 0, since det JO > 0 and trace JO < 0, the origin is stable and A and B are
cols because det J < 0 for these points. If a0 < 0, the origin is unstable and A and
B are still cols. Therefore, if a0 > 0, the current in the circuit eventually dies away
to zero with increasing time. If a0 < 0, the current increases indefinitely, which is
physically impossible.

7. There are three critical points at O = (0, 0), A = ( a
b
, 0), and B =

(
c+a
b

,
c(c+a)

b

)
.

The origin is an unstable node and A is a col. The critical point at B is stable since
det JB > 0 and trace JB < 0. Therefore, the population and birth rate stabilize to
the values given by B in the long term.

8. When αβ > 1, there is one stable critical point at A = (0, 1
β ). When αβ < 1, A

becomes a col and B = (
√

1 − αβ, α) and C = (−√
1 − αβ, α) are both stable.

When αβ > 1, the power goes to zero and the velocity of the wheel tends to 1
β ,

and when αβ < 1, the power and velocity stabilize to the point B.

9. (a) There is one critical point at
(

KG0
K−C

,
G0

K−C

)
, which is in the first quadrant if

K > C. When C = 1, the critical point is nonhyberbolic. The system can be
solved and there are closed trajectories around the critical point. The economy
oscillates (as long as I (t), S(t) > 0). If C 
= 1, then the critical point is
unstable if 0 < C < 1 and is stable if C > 1.

(b) The critical point is stable and the trajectory tends to this point. The choice of
initial condition is important to avoid I (t) or S(t) from going negative, where
the model is no longer valid.

10. Note that dη
dτ

= et and d2η

dτ 2 = dη
dτ

dt
dτ

. There are four critical points: O = (0, 0), an

unstable node; A = (−1, 0), a col; B = (0, 2), a col; and C =
(
− 3

2 , 1
2

)
, a stable

focus.

20.3 Chapter 3
1. This is a competing species model. There are four critical points in the first quadrant

at O = (0, 0), P = (0, 3), Q = (2, 0), and R = (1, 1). The point O is an
unstable node, P and Q are both stable nodes, and R is a saddle point. There is
mutual exclusion and one of the species will become extinct depending on the initial
populations.
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2. This is a Lotka–Volterra model with critical points at O = (0, 0) and A = (3, 2).
The system is structurally unstable. The populations oscillate, but the cycles are
dependent on the initial values of x and y.

3. This is a predator–prey model. There are three critical points in the first quadrant
at O = (0, 0), F = (2, 0), and G = ( 3

2 , 1
2 ). The points O and F are saddle points

and G is a stable focus. In terms of species behavior, the two species coexist and
approach constant population values.

4. Consider the three cases separately.

(i) If 0 < µ < 1
2 , then there are four critical points at O = (0, 0), L = (2, 0),

M = (0, µ), and N =
(

µ−2
µ2−1

,
µ(2µ−1)

µ2−1

)
. The point O is an unstable node, L

and M are saddle points, and N is a stable point. To classify the critical points,
consider det J and trace J . The two species coexist.

(ii) If 1
2 < µ < 2, then there are three critical points in the first quadrant, all of

which lie on the axes. The point O is an unstable node, L is a stable node, and
M is a saddle point. Species y becomes extinct.

(iii) If µ > 2, then there are four critical points in the first quadrant. The point O

is an unstable node, L and M are stable nodes, and N is a saddle point. One
species becomes extinct.

5. (a) A predator–prey model. There is coexistence; the populations stabilize to the
point ( 5

4 , 11
4 ).

(b) A competing species model. There is mutual exclusion; one species becomes
extinct.

6. There are three critical points in the first quadrant if 0 ≤ ε < 1: at O = (0, 0),
A = ( 1

ε , 0) and B = ( 1+ε
1+ε2 , 1−ε

1+ε2 ). There are two when ε ≥ 1. The origin is
always a col. When ε = 0, the system is Lotka–Volterra, and trajectories lie on
closed curves away from the axes. If 0 < ε < 1, A is a col and B is stable since
the trace of the Jacobian is negative and the determinant is positive. When ε ≥ 1,
A is stable.

7. There are three critical points at O = (0, 0), P = (1, 0), and Q = (0.6, 0.24).
Points O and P are cols and Q is stable. There is coexistence.

8. There is a limit cycle enclosing the critical point at (0.48, 0.2496). The populations
vary periodically and coexist.

9. One example would be the following. X andY prey on each other;Y has cannibalistic
tendencies and also preys on Z. A diagram depicting this behavior is plotted in
Figure 20.1.

10. Let species X, Y , and Z have populations x(t), y(t), and z(t), respectively. The
interactions are as follows: X preys on Y ; Z preys on X; Y and Z are in competition.

20.4 Chapter 4
1. Convert to polar coordinates to get

ṙ = r

(
1 − r2 − 1

2
cos2 θ

)
, θ̇ = −1 + 1

2
cos θ sin θ.
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Z

X Y

Figure 20.1: One possible interaction between three interacting insect species.

Since θ̇ < 0, the origin is the only critical point. On r = 1
2 , ṙ > 0, and on

r = 2, ṙ < 0. Therefore, there exists a limit cycle by the corollary to the Poincaré–
Bendixson theorem.

2. Plot the graph of y = x − x3 cos3(πx) to prove that the origin is the only critical
point inside the square. Linearize to show that the origin is an unstable focus.
Consider the flow on the sides of the rectangle, for example, on x = 1, with
−1 ≤ y ≤ 1, ẋ = −y +cos π ≤ 0. Hence, the flow is from right to left on this line.
Show that the rectangle is invariant and use the corollary to the Poincaré–Bendixson
theorem.

3. Plot the graph of y = x8 −3x6 +3x4 −2x2 +2 to prove that the origin is a unique
critical point. Convert to polar coordinates to get

ṙ = r
(

1 − r2(cos4 θ + sin4 θ)
)

, θ̇ = 1 − r2 cos θ sin θ(sin2 θ − cos2 θ).

Now div(X) = 2 − 3r2 and so div(X) is nonzero in the annulus A = {1 < r < 2}.
On the circle r = 1 − ε, ṙ > 0, and on the circle r = 2 + ε, ṙ < 0. Therefore, there
is a unique limit cycle contained in the annulus by Dulac’s criteria.

4. Use the Poincaré–Bendixson theorem.

5. Consider the isocline curves as in Figure 4.3. If the straight line intersects the
parabola to the right of the maximum, then there is no limit cycle. If the straight
line intersects the parabola to the left of the maximum, then there exists a limit
cycle.

6. (a) The limit cycle is circular. (b) The limit cycle has fast and slow branches.

7. It will help if you draw rough diagrams.

(a) Now div(X) = −(1 + x2 + x4) < 0. Hence, there are no limit cycles by
Bendixson’s criteria.

(b) Now div(X) = 2 − x. There are four critical points at (0, 0), (1, 0), (−1, 1),
and (−1, −1). The x-axis is invariant. On x = 0, ẋ = 2y2 ≥ 0. Hence, there
are no limit cycles in the plane.

(c) Now div(X) = −6−2x2 < 0. Hence, there are no limit cycles by Bendixson’s
criteria.
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(d) Now div(X) = −3 − x2 < 0. Hence, there are no limit cycles by Bendixson’s
criteria.

(e) Now div(X) = 3x − 2 and div(X) = 0 on the line x = 2
3 . There are three

critical points at (1, 0), (−1, 0), and (2, 3). The x-axis is invariant, and ẋ < 0
for y > 0 on the line x = 2

3 . Hence, there are no limit cycles by Bendixson’s
criteria.

(f) Now div(X) = −3x2y2. Therefore, there are no limit cycles lying entirely in
one of the quadrants. However, ẋ = −y2 on the line x = 0 and ẏ = x5 on the
line y = 0. Hence, there are no limit cycles by Bendixson’s criteria.

(g) Now div(X) = (x − 2)2. On the line x = 2, ẋ = −y2, and so no limit cycle
can cross this line. Hence, there are no limit cycles by Bendixson’s criteria.

8. (a) The axes are invariant. Now div(ψX) = 1
xy2 (2−2x) and so div(ψX) = 0 when

x = 1. There are four critical points and only one, (−16, 38), lying wholly in
one of the quadrants. Since the divergence is nonzero in this quadrant, there
are no limit cycles.

(b) Now div(ψX) = − δ
y − d

x and so div(ψX) = 0 when y = − δx
d

. Since δ > 0
and d > 0, there are no limit cycles contained in the first quadrant.

9. The one-term uniform expansion is x(t, ε) = a cos(t)
(

1 − ε
(

1
2 + a2

8

)
+ · · ·

)
+

O(ε), as ε → 0.

20.5 Chapter 5

1. The Hamiltonian is H(x, y) = y2

2 − x2

2 + x4

4 . There are three critical points: (0, 0),
which is a saddle point, and (1, 0) and (−1, 0), which are both centers.

2. There are three critical points: (0, 0), which is a center, and (1, 0) and (−1, 0),
which are both saddle points.

3. The critical points occur at (nπ, 0), where n is an integer. When n is odd, the critical
points are saddle points, and when n is even, the critical points are stable foci. The
system is now damped and the pendulum swings less and less, eventually coming to
rest at θ = 2nπ degrees. The saddle points represent the unstable equilibria when
θ = (2n + 1)π degrees.

4. The Hamiltonian is H(x, y) = y4

4 − y2

2 − x2

2 + x4

4 . There are nine critical points.

5. (a) The origin is asymptotically stable.

(b) The origin is asymptotically stable if x < α and y < β.

(c) The origin is unstable.

6. The origin is asymptotically stable. The positive limit sets are either the origin or
the ellipse 4x2 + y2 = 1, depending on the value of p.

7. The function V (x, y) is a Lyapunov function if a > 1
4 .

8. The basin of attraction of the origin is the circle x2 + y2 < 4.

9. Use Maple (see Section 4.4).

10. Now V̇ = −8(x4 + 3y6)(x4 + 2y2 − 10)2. The origin is unstable, and the curve
x4 + 2y2 = 10 is an attractor.
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20.6 Chapter 6
1. (a) There is one critical point when µ ≤ 0, and there are two critical points when

µ > 0. This is a saddle–node bifurcation.

(b) When µ < 0, there are two critical points and the origin is stable. When µ > 0,
there is one critical point at the origin which is unstable. The origin undergoes
a transcritical bifurcation.

(c) There is one critical point at the origin when µ ≤ 0, and there are three critical
points—two are unstable—when µ > 0. This is called a subcritical pitchfork
bifurcation.

2. Possible examples include
(a) ẋ = µx(µ2 − x2);

(b) ẋ = x4 − µ2;

(c) ẋ = x(µ2 + x2 − 1).

3. The critical points are given by O = (0, 0), A = 12+√
169−125h

5 , and B =
12−√

169−125h
5 . There are two critical points if h ≤ 0, the origin is unstable, and

A is stable (but negative harvesting is discounted). There are three critical points if
0 < h < 1.352, the origin and A are stable, and B is unstable. There is one stable
critical point at the origin if h ≥ 1.352.

The term x(1 − x
5 ) represents the usual logistic growth when there is no

harvesting. The term hx
0.2 + x

represents harvesting from h is zero up to a maximum
of h, regardless of how large x becomes (plot the graph).

When h = 0, the population stabilizes to 5 × 105; when 0 < h < 1.352, the
population stabilizes to A × 105; and when h > 1.352, the population decreases
to zero. Use the Animate command in Maple to plot ẋ as h varies from 0 to 8.
The harvesting is sustainable if 0 < h < 1.352, where the fish persist, and it is
unsustainable if h > 1.352, when the fish become extinct from the lake.

4. (a) No critical points if µ < 0. There is one nonhyperbolic critical point at O =
(0, 0) if µ = 0, and there are two critical points at A = (0, 4

√
µ) and B =

(0, − 4
√

µ). Both A and B are unstable.

(b) There are two critical points at O = (0, 0) and A = (µ2, 0) if µ 
= 0 (symme-
try). O is stable and A is unstable. There is one nonhyperbolic critical point at
O = (0, 0) if µ = 0.

(c) There are no critical points if µ < 0. There is one nonhyperbolic critical point
at O = (0, 0) if µ = 0, and there are four critical points at A = (2

√
µ, 0),

B = (−2
√

µ, 0), C = (
√

µ, 0), and D = (−√
µ, 0) if µ > 0. The points A

and D are stable, and B and C are unstable.

5. (a) If µ < 0, there is a stable critical point at the origin and an unstable limit cycle
of radius r = −µ. If µ = 0, the origin is a center, and if µ > 0, the origin
becomes unstable. The flow is counterclockwise.

(b) If µ ≤ 0, the origin is an unstable focus. If µ > 0, the origin is unstable, and
there is a stable limit cycle of radius r = µ

2 and an unstable limit cycle of
radius r = µ.
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(c) If µ 
= 0, the origin is unstable and there is a stable limit cycle of radius
|r| = µ. If µ = 0, the origin is stable.

6. Take x = u + f3(u). Then if the eigenvalues of J are not resonant of order 3,

f30 = a30

2λ1
, f21 = a21

λ1 + λ2
, f12 = a12

2λ2
, f03 = a03

3λ2 − λ1
,

g30 = b30

3λ1 − λ2
, g21 = b21

2λ1
, g12 = b12

λ1 + λ2
, g03 = b03

2λ2

and all of the cubic terms can be eliminated from the system, resulting in a linear
normal form u̇ = Ju.

7. See reference [6] in Chapter 8.

8. (a) There is one critical point at the origin and there are at most two stable limit
cycles. As µ increases through zero, there is a Hopf bifurcation at the origin.
Next, there is a saddle–node bifurcation to a large-amplitude limit cycle. If µ

is then decreased back through zero, there is another saddle–node bifurcation
back to the steady state at the origin.

(b) If µ < 0, the origin is unstable, and if µ = 0, ṙ > 0 if r 
= 0, the origin is
unstable, and there is a semistable limit cycle at r = 1. If µ > 0, the origin

is unstable; there is a stable limit cycle of radius r = 2+µ−√
µ2+4µ

2 and

an unstable limit cycle of radius r = 2+µ+√
µ2+4µ

2 . It is known as a fold

bifurcation because a fold in the graph of y = (r −1)2 −µr crosses the r-axis
at µ = 0.

9. If µ < 0, the origin is a stable focus and as µ passes through zero, the origin
changes from a stable to an unstable spiral. If µ > 0, convert to polars. The origin
is unstable and a stable limit cycle bifurcates.

10. The critical points occur at A = (0, −α
β ) and B = (α + β, 1). Thus, there are

two critical points everywhere in the (α, β) plane apart from along the line α =
−β, where there is only one. The eigenvalues for the matrix JA are λ1 = β and

λ2 = − (α+β)
β . The eigenvalues for the matrix JB are λ = −α±√

α2−4(α+β)
2 .

There is a codimension-2 bifurcation along the line α = −β and it is a transcritical
bifurcation.

20.7 Chapter 7
1. Eigenvalues and eigenvectors given by [3, (−2, −2, 1)T ], [−3, (−2, 1, −2)T ],

and [9, (1, −2, −2)T ]. The origin is unstable; there is a col in two planes and
an unstable node in the other.

2. Eigenvalues are λ1,2 = 1 ± i
√

6, λ3 = 1. The origin is unstable and the flow is
rotating. Plot solution curves using Maple.

3. There are two critical points at O = (0, 0, 0) and P = (−1, −1, −1). The critical
points are both hyperbolic and unstable. The eigenvalues for O are [1, 1, −1] and
those for P are [1, −1, −1].
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4. Consider the flow onx = 0 withy ≥ 0 and z ≥ 0, etc. The first quadrant is positively
invariant. The plane x + y + 2z = k is invariant since ẋ + ẏ + 2ż = 0. Hence, if a
trajectory starts on this plane, then it remains there forever. The critical points are

given by
(

λy
1+y

, y, y/2
)

. Now on the plane x+y+2z = k, the critical point satisfies

the equation λy
1+y

+y+y = k, which has solutions y = (2−λ)±√
(2−λ)2+32
4 . Since

the first quadrant is invariant, λ+(p) must tend to this critical point.

5. (a) Take V = x2 +y2 + z2. Then V̇ = −
(
x2 + y4 + (y − z2)2 + (z − x2)2

)
≤

0. Now V̇ = 0 if and only if x = y = z = 0; hence, the origin is globally
asymptotically stable.

(b) Consider V = ax2 + by2 + cz2. Now V̇ = −2(a2x2 + b2y2 + c2z2) +
2xyz(ax + by + cz). Hence, V̇ < V 2

c − 2cV and V̇ < 0 in the set V < 2c2.

Therefore, the origin is asymptotically stable in the ellipsoid V < 2c2.

6. See Section 7.5.

7. There are eight critical points at (0, 0, 0), (0, 0, 1/2), (0, 1/2, 0), (0, 1, −1),

(1/2, 0, 0), (−1/3, 0, 1/3), (1/3, −1/3, 0), and (1/14, 3/14, 3/14). The plane x+
y + z = 1/2 is a solution plane since ẋ + ẏ + ż = (x + y + z)− 2(x + y + z)2 = 0
on this plane. There are closed curves on the plane representing periodic behav-
ior. The three species coexist and the populations oscillate in phase. The system is
structurally unstable.

8. (i) The populations settle on to a period-two cycle.

(ii) The populations settle on to a period-four cycle.

9. See Section 3.4 for commands to plot a time series.

10. A Jordan curve lying wholly in the first quadrant exists, similar to the limit cycle
for the Liénard system when a parameter is large (see Chapter 10). The choice of
q and C are important; see reference [10].

20.8 Chapter 8
1. Starting with r0 = 4, the returns are r1 = 1.13854, r2 = 0.66373, . . . , r10 =

0.15307, to five decimal places.

2. The Poincaré map is given by rn+1 = P(rn) = µrn
rn+e−2µπ (µ−rn)

.

3. Now dP
dr

∣∣∣
µ

= e−2µπ . Therefore, the limit cycle at r = µ is hyperbolic stable if

µ > 0 and hyperbolic unstable if µ < 0. What happens when µ = 0?

4. The Poincaré map is given by rn+1 = P(rn) =
(

r2
n

r2
n+e−4π (1−r2

n)

) 1
2

.
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5. The limit cycle at r = 1 is stable since dP
dr

∣∣∣
r=1

= e−4π .

6. (a) The Poincaré section in the p1q1 plane is crossed 14 times.

(b) The trajectory is quasiperiodic.

7. Edit program listed in Section 8.4.

8. Edit program listed in Section 8.4.

9. A chaotic attractor is formed.

10. (a) See Figure 20.2(a).

(b) See Figure 20.2(b). Take � = 0.07. For example, choose initial conditions (i)
x0 = 1.16, y0 = 0.112 and (ii) x0 = 0.585, y0 = 0.29.
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Figure 20.2: (a) Bifurcation diagram (b) multistable behavior.

20.9 Chapter 9
1. Differentiate to obtain 2uu̇ = G′(x)ẋ and find dy

du
.

2. Using Maple:
{{

x2 − 3xy + 9y2, 0, −26y2 − 36yz − 26z2
}

, −25z3
}

and{{
9, 9 + x2 − 3xy, −27 + y2 + yz + z2

}
, −27z + 2z3

}
.

3. Lex
{
y3 − y4 − 2y6 + y9, x + y2 + y4 − y7

}
;

DegLex
{
−x2 + y3, −x + x3 − y2

}
;

DegRevLex
{
−x2 + y3, −x + x3 − y2

}
.

Solutions are (0, 0), (−0.471074, 0.605423), and (1.46107, 1.28760).

4. The Lyapunov quantities are given by L(i) = a2i+1, where i = 0 to 6.

5. See reference [8].

7. The Lyapunov quantities are given by L(0) = −a1, L(1) = −3b03 − b21, L(2) =
−3b30b03 − b41, and L(3) = b3

03.
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8. The homoclinic loop lies on the curve y2 = x2 + 2
3x3.

10. There are three limit cycles when λ = −0.9.

20.10 Chapter 10
1. There is one critical point in the finite plane at the origin that is a stable node.

The eigenvalues and eigenvectors are given by λ1 = −1, (1, −1)T and λ2 = −4,
(1, −4)T , respectively. The function g2(θ) is defined as

g2(θ) = −4 cos2 θ − 5 cos θ sin θ − sin2 θ.

There are four critical points at infinity at θ1 = tan−1(−1), θ2 = tan−1(−1) + π ,
θ3 = tan−1(−4), and θ4 = tan−1(−4) + π . The flow in a neighborhood of a
critical point at infinity is qualitatively equivalent to the flow on X = 1 given by

ẏ = −y2 − 5y − 4, ż = −yz.

There are two critical points at (−1, 0), which is a col, and (−4, 0), which is an
unstable node. Since n is odd, antinodal points are qualitatively equivalent.

2. There is one critical point in the finite plane at the origin that is a col. The eigenvalues
and eigenvectors are given by λ1 = 1, (1, 1)T and λ2 = −1, (2, 1)T , respectively.
The function g2(θ) is defined as

g2(θ) = −2 cos2 θ + 6 cos θ sin θ − 4 sin2 θ.

There are four critical points at infinity at θ1 = tan−1(1), θ2 = tan−1(1) + π ,
θ3 = tan−1(1/2), and θ4 = tan−1(1/2) + π . The flow in a neighborhood of a
critical point at infinity is qualitatively equivalent to the flow on X = 1 given by

ẏ = −4y2 + 6y − 2, ż = 3z − 4yz.

There are two critical points at (1, 0), which is a stable node, and (1/2, 0), which
is an unstable node. Since n is odd, antinodal points are qualitatively equivalent.

3. There are no critical points in the finite plane. The function g3(θ) is given by

g3(θ) = 4 cos2 θ sin θ − sin3 θ.

The function has six roots in the interval [0, 2π) at θ1 = 0, θ2 = 1.10715, θ3 =
2.03444, θ4 = 3.14159, θ5 = 4.24874, and θ6 = 5.1764. All of the angles are
measured in radians. The behavior on the plane X = 1 is determined from the
system

ẏ = 4y − 5z2 − y3 + yz2, ż = −z − zy2 + z3.

There are three critical points at O = (0, 0), A = (2, 0), and B = (−2, 0). Points
A and B are stable nodes and O is a col. Since n is even, antinodal points are
qualitatively equivalent, but the flow is reversed.

All of the positive and negative limit sets for this system are made up of the
critical points at infinity.
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4. There is one critical point at the origin in the finite plane that is a stable focus.
The critical points at infinity occur at θ1 = 0 radians, θ2 = π

2 radians, θ3 = −π
2

radians, and θ4 = π radians. Two of the points at infinity are cols and the other two
are unstable nodes.

5. There is a unique critical point in the finite plane at the origin that is an unstable
node. The critical points at infinity occur at θ1 = 0 radians, θ2 = π

2 radians,
θ3 = −π

2 radians, and θ4 = π radians. Two of the points at infinity are cols and
the other two are unstable nodes. There is at least one limit cycle surrounding the
origin by the corollary to the Poincaré–Bendixson theorem.

7. If a1a3 > 0, then the system has no limit cycles. If a1a3 < 0, there is a unique
hyperbolic limit cycle. If a1 = 0 and a3 
= 0, then there are no limit cycles. If
a3 = 0 and a1 
= 0, then there are no limit cycles. If a1 = a3 = 0, then the origin
is a center by the classical symmetry argument.

8. When ε is small, one may apply the Melnikov theory of Chapter 9 to establish
where the limit cycles occur. The limit cycles are asymptotic to circles centered at
the origin. If the degree of F is 2m + 1 or 2m + 2, there can be no more than m

limit cycles. When ε is large, if a limit cycle exists, it shoots across in the horizontal
direction to meet a branch of the curve y = F(x), where the trajectory slows down
and remains near the branch until it shoots back across to another branch of F(x),
where it slows down again. The trajectory follows this pattern forever. Once more,
there can be no more than m limit cycles.

9. Use a similar argument to that used in the proof to Theorem 4. See Liénard’s paper
[12] in Chapter 4.

10. The function F has to satisfy the conditions a1 > 0, a3 < 0, and a2
3 > 4a1,

for example. This guarantees that there are five roots for F(x). If there is a local
maximum of F(x) at, say, (α1, 0), a root at (α2, 0), and a local minimum at (α3, 0),
then it is possible to prove that there is a unique hyperbolic limit cycle crossing
F(x) in the interval (α1, α2) and a second hyperbolic limit cycle crossing F(x) in
the interval (α3, ∞). Use similar arguments to those used in the proof of Theorem
4. See reference [23] for a proof.

20.11 Chapter 11
1. The general solution is xn = π(4n + cn(n − 1)).

2. (a) 2 × 3n − 2n.

(b) 2−n(3n + 1).

(c) 2
n
2 (cos(nπ/4) + sin(nπ/4)).

(d) Fn = 1
2n

√
5

[
(1 + √

5)n − (1 − √
5)n

]
.

(e) (i) xn = 2n + 1;

(ii) xn = 1
2 (−1)n + 2n + n + 1

2 ;

(iii) xn = 1
3 (−1)n + 5

3 2n − 1
6 en(−1)n − 1

3 en2n + 1
2 en.

3. The dominant eigenvalue is λ1 = 1.107 and
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(a)

X(15) =
⎛
⎝ 64932

52799
38156

⎞
⎠ ;

(b)

X(50) =
⎛
⎝ 2.271 × 106

1.847 × 106

1.335 × 106

⎞
⎠ ;

(c)

X(100) =
⎛
⎝ 3.645 × 108

2.964 × 108

2.142 × 108

⎞
⎠ .

4. The eigenvalues are λ1 = 1 and λ2,3 = −1±√
3

2 . There is no dominant eigenvalue
since |λ1| = |λ2| = |λ3|. The population stabilizes.

5. The eigenvalues are 0, 0, −0.656 ± 0.626i, and λ1 = 1.313. Therefore, the popu-
lation increases by 31.3% every 15 years. The normalized eigenvector is given by

X̂ =

⎛
⎜⎜⎜⎜⎝

0.415
0.283
0.173
0.092
0.035

⎞
⎟⎟⎟⎟⎠ .

7. Before insecticide is applied, λ1 = 1.465, which means that the population in-
creases by 46.5% every 6 months. The normalized eigenvector is

X̂ =
⎛
⎝ 0.764

0.208
0.028

⎞
⎠ .

After the insecticide is applied, λ1 = 1.082, which means that the population
increases by 8.2% every 6 months. The normalized eigenvector is given by

X̂ =
⎛
⎝ 0.695

0.257
0.048

⎞
⎠ .

8. For this policy, d1 = 0.1, d2 = 0.4, and d3 = 0.6. The dominant eigenvalue is
λ1 = 1.017 and the normalized eigenvector is

X̂ =
⎛
⎝ 0.797

0.188
0.015

⎞
⎠ .

9. Without any harvesting, the population would double each year since λ1 = 2.
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(a)

λ1 = 1; X̂ =
⎛
⎝ 24/29

4/29
1/29

⎞
⎠ .

(b)

h1 = 6/7; X̂ =
⎛
⎝ 2/3

2/9
1/9

⎞
⎠ .

(c)

λ1 = 1.558; X̂ =
⎛
⎝ 0.780

0.167
0.053

⎞
⎠ .

(d)

h1 = 0.604, λ1 = 1.433; X̂ =
⎛
⎝ 0.761

0.177
0.062

⎞
⎠ .

(e)

λ1 = 1.672; X̂ =
⎛
⎝ 0.668

0.132
0.199

⎞
⎠ .

10. Take h2 = h3 = 1, then λ1 = 1, λ2 = −1, and λ3 = 0. The population stabilizes.

20.12 Chapter 12
1. The iterates give orbits with periods (i) one, (ii) one, (iii) three, and (iv) nine. There

are 2 points of period one, 2 points of period two, 6 points of period three, and 12
points of period four. In general, there are 2N (sum of points of periods that divide
N ) points of period N .

2. (a) The functions are given by

T 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9
4x, 0 ≤ x < 1

3

3
2 − 9

4x, 1
3 ≤ x < 1

2

9
4x − 3

4 , 1
2 ≤ x < 2

3

9
4 (1 − x), 2

3 ≤ x ≤ 1
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and

T 3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

27
8 x, 0 ≤ x < 2

9

3
2 − 27

8 x, 2
9 ≤ x < 1

3

27
8 x − 3

4 , 1
3 ≤ x < 4

9

9
4 − 27

8 x, 4
9 ≤ x < 1

2

27
8 x − 9

8 , 1
2 ≤ x < 5

9

21
8 − 27

8 x, 5
9 ≤ x < 2

3

27
8 x − 15

8 , 2
3 ≤ x < 7

9

27
8 (1 − x), 7

9 ≤ x < 1.

There are two points of period one, two points of period two, and no points of
period three.

(b) x1,1 = 0, x1,2 = 9
14 ; x2,1 = 45

106 , x2,2 = 81
106 ; x3,1 = 45

151 , x3,2 = 81
151 ,

x3,3 = 126
151 , x3,4 = 225

854 , x3,5 = 405
854 , and x3,6 = 729

854 .

4. Use functions of functions to determine f N
µ . There are 2, 2, 6, and 12 points of

periods one, two, three, and four, respectively.

5. A value consistent with period-two behavior is µ = 0.011. Points of period two
satisfy the equation

µ2x2 − 100µ2x − µx + 100µ + 1 = 0.

6. Edit a program from Section 12.6.

7. Points of period one are (−3/10, −3/10) and (1/5, 1/5). Two points of period two
are given by (x1/2, (0.1 − x1)/2), where x1 is a root of 5x2 − x − 1 = 0. The
inverse map is given by

xn+1 = yn, yn+1 = 10

9

(
xn − 3

50
+ y2

n

)
.

8. (a) The eigenvalues are given by λ1,2 = −αx ±
√

α2x2 + β. A bifurcation occurs
when one of the |λ| = 1. Take the case where λ = −1.

(c) The program is listed in Section 12.6.

9. (a) (i) When a = 0.2, c1,1 = 0 is stable, c1,2 = 0.155 is unstable, and c1,3 =
0.946 is stable.

(ii) When a = 0.3, c1,1 = 0 is stable, c1,2 = 0.170 is unstable, and c1,3 =
0.897 is unstable.

10. See reference [3].
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20.13 Chapter 13
1. (a) The orbit remains bounded forever; z500 ≈ −0.3829 + 0.1700i.

(b) The orbit is unbounded; z10 ≈ −0.6674 × 10197 + 0.2396 × 10197.

2. Fixed points of period one are given by

z1,1 = 1

2
+ 1

4

√
10 + 2

√
41 − i

4

√
2
√

41 − 10,

z1,2 = 1

2
− 1

4

√
10 + 2

√
41 + i

4

√
2
√

41 − 10.

Fixed points of period two are given by

z2,1 = −1

2
+ 1

4

√
2 + 2

√
17 − i

4

√
2
√

17 − 2,

z2,2 = −1

2
− 1

4

√
2 + 2

√
17 + i

4

√
2
√

17 − 2.

3. Use the Maple program given in Section 13.3; J (0, 0) is a circle and J (−2, 0) is a
line segment.

4. There is one fixed point located at approximately z1,1 = 1.8202 − 0.0284i.

5. See the example in the text. The curves are again a cardioid and a circle, but the
locations are different in this case.

7. Fixed points of period one are given by

z1,1 = 3 + √
9 − 4c

2
, z1,2 = 3 − √

9 − 4c

2
.

Fixed points of period two are given by

z2,1 = 1 + √
5 − 4c

2
, z2,2 = 1 − √

5 − 4c

2
.

9. (i) Period four and (ii) period three.

20.14 Chapter 14
1. There are 11 points of period one.

3. Find an expression for En in terms of En+1.

5. See the paper of Li and Ogusu [6].

6. (a) Bistable: 4.765 − 4.766 Wm−2. Unstable: 6.377 − 10.612 Wm−2.

(b) Bistable: 3.936 − 5.208 Wm−2. Unstable: 4.74 − 13.262 Wm−2.

(c) Bistable: 3.482 − 5.561 Wm−2. Unstable: 1.903 − 3.995 Wm−2.

8. Use the function G(x) = ae−bx2
to generate the Gaussian pulse. The parameter b

controls the width of the pulse.
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20.15 Chapter 15
1. (a) The length remaining at stage k is given by

L = 1 − 2

5
− 2 × 3

52 − · · · − 2 × 3k−1

5k
.

The dimension is Df = ln 3
ln 5 ≈ 0.6826.

(b) Df = ln 2
ln

√
2

= 2. If the fractal were constructed to infinity there would be

no holes and the object would have the same dimension as a plane. Thus, this
mathematical object is not a fractal.

2. The figure is similar to the stage 3 construction of the Sierpiński triangle. In fact,
this gives yet another method for constructing this fractal as Pascal’s triangle is
extended to infinity.

3. See Figure 15.8 as a guide.

4. The dimension is Df = ln 8
ln 3 ≈ 1.8928.

6. Note that
∑N

i=1 pi(l) = 1 and show that

d

dq
ln

⎛
⎝ N∑

i=1

p
q
i

⎞
⎠ =

(∑N
i=1 p

q
i

ln pi

)
(∑N

i=1 p
q
i

) ,

and take the limit q → 1.

7. (i) The fractal is homogeneous;

(ii) αmax ≈ 1.26 and αmin ≈ 0.26;

(iii) αmax ≈ 0.83 and αmin ≈ 0.46. Take k = 500 in the plot commands.

8. Using the same methods as in Example 4,

D0 = ln 4

ln 3
, αs = s ln p1 + (k − s) ln p2

−k ln 3
, and − fs =

ln
(

2k
(

k
s

))
−k ln 3

.

9. At the kth stage, there are 5k segments of length 3−k . A number

Ns = 3k−s2s

(
k

s

)

of these have weight pk−s
1 ps

2. Use the same methods as in Example 4.

10. Using multinomials,

αs = n1 ln p1 + n2 ln p2 + n3 ln p3 + n4 ln p4

ln 3−k
and − fs =

ln 4!
n1!n2!n3!n4!
ln 3−k

,

where n1 + n2 + n3 + n4 = k.
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20.16 Chapter 16
1. Take the transformations xn = 1

a un and yn = b
a vn.

2. There is 1 control range when p = 1, 3 control ranges when p = 2, 7 control
ranges when p = 3, and 12 control ranges when p = 4.

3. Points of period one are located at approximately (−1.521, −1.521) and (0.921,

0.921). Points of period two are located near (−0.763, 1.363) and (1.363, −0.763).

4. See the paper of Chau [14].

5. See Section 16.3.

6. The two-dimensional mapping is given by

xn+1 = A + B(xn cos(x2
n + y2

n) − yn sin(x2
n + y2

n)),

yn+1 = B(xn sin(x2
n + y2

n) + yn cos(x2
n + y2

n)).

The one point of period one is located near (2.731, 0.413).

7. (i) There are three points of period one;

(ii) there are nine points of period one.

8. See our research paper [11].

9. The control region is very small and targeting is needed in this case. The chaotic
transients are very long. Targeting is not required in Exercise 9, where the control
region is much larger. Although there is greater flexibility (nine points of period
one) with this system, the controllability is reduced.

20.17 Chapter 17
2. Use the chain rule.

5. (a) Show that dV(a)
dt

= −∑n
i=1

(
d

dai

(
φ−1(ai)

)) (
dai
dt

)2
.

(b)

V(a) = − 1

2

(
7a2

1 + 12a1a2 − 2a2
2

)
− 4

γπ2 (log (cos(πa1/2))

+ log (cos(πa2/2))) .

There are two stable critical points: one at (12.98, 3.99) and the other at
(−12.98, −3.99).

6. The algorithm converges to (a) x2; (b)x1; (c)x3; (d) − x1.

8. (a) Fixed points of period one satisfy the equation a = γ a + θ + wσ(a).
(b–d) See Pasemann and Stollenwerk’s paper; reference [4] in Chapter 12.
(e) There is a bistable region for 4.5 < w < 5.5, approximately.

9. Iterate 10, 000 times. A closed loop starts to form, indicating that the system is
quasiperiodic.
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20.18 Chapter 18
1. The analytic solution is I (t) = −3.14 cos(t) + 9.29 sin(t) + 3.14e−2t .

2. The analytic solution is I (t) = (−2 cos(4t) − sin(4t) + 10e−2t − 8e−3t )/50.

3. The analytic solution is I (t) = (2 sin(t) − cos(t) + e−2t )/
√

2.

4. As µ → 0, the limit cycle becomes a circle.

5. Period 4.

6. Chaotic behavior.

7. There are two distinct limit cycles. The system is multistable.

20.19 Chapter 19
Dynamical Systems with Applications

1. (a) Eigenvalues and eigenvectors λ1 = 3.37, (1, 0.19)T ; λ2 = −2.37, (1, −2.7)T .
Saddle point, ẋ = 0 on y = − 3

2 x, ẏ = 0 on y = 1
2 x.

(b) ṙ > 0 when 0 < θ < π , ṙ < 0 when π < θ < 2π , ṙ = 0 when θ = 0, π , and
θ̇ = 0 when θ = (2n−1)

4 π , n = 1, 2, 3, 4.

2. (a) V̇ = −(x − 2y)2, V̇ = 0 when y = x
2 . On y = x

2 , ẋ, ẏ 
= 0; therefore, the
origin is asymptotically stable.

(b) r = 1
t+1 , θ = t + 2nπ .

3. (a) λ1 = −1, λ2 = −2 + i, λ3 = −2 − i. The origin is globally asymptotically
stable.

(b) V̇ = −4y4 − 2z4 < 0, if y, z 
= 0. Therefore, the origin is asymptotically
stable; trajectories approach the origin forever.

4. (a) One limit cycle when µ < 0, three limit cycles when µ > 0, µ 
= 1, and two
limit cycles when µ = 1.

(b) Use Bendixson’s criteria:

(i) divX = −(1 + 3x2 + x4) < 0;

(ii) divX = 3x3y2, on x = 0, ẋ ≥ 0, on y = 0, ẏ ≥ 0; no limit cycles in the
quadrants and axes invariant;

(iii) divX = (1 + y)2. On y = −1, ẏ > 0.

5. (a) x1,1 = 0, x1,2 = 7
11 ; x2,1 = 28

65 , x2,2 = 49
65 ; x3,1 = 28

93 , x3,2 = 49
93 ,

x3,3 = 77
93 , x3,4 = 112

407 , x3,5 = 196
407 , x3,6 = 343

407 .

(b) z1,1 = 1+√
13

2 , z1,2 = 1−√
13

2 ; z2,1 = 1, z2,2 = −2. Fixed points of period
one are unstable.

6. (a) Area of inverted Koch snowflake is
√

3
10 units2; Df = 1.2619.

(b) Use L’Hopital’s rule.
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7. (a) Period one
(

5
9 , 1

9

)
,
(
−1, − 1

5

)
; both fixed points are unstable.

(b) See Section 14.8.

8. (a)

W = 1

4

⎛
⎜⎜⎝

0 −1 1 1
−1 0 1 1
1 1 0 −1
1 1 −1 0

⎞
⎟⎟⎠ .

(b)

V(a) = − 1

2

(
a2

1 + 2a1a2 + 4a2
2 + 12a1 + 20a2

)
− 4

γπ2 (log (cos(πa1/2)) + log (cos(πa2/2))) .

Dynamical Systems with Maple

1. (a) ẋ = −k1x, ẏ = k1x − k2y, ż = k2y; x(20) = 4.54 × 10−5, y(20) =
0.3422, z(20) = 0.6577.

(b) Period is approximately T ≈ −6.333.

2. (a) See Section 3.5, Exercise 6.

(b) H(x, y) = y2

2 − x2

2 + x3

3 , saddle point at origin, center at (1, 0).

3. (a) Three critical points when µ < 0; one critical point when µ ≥ 0.

(b) Chaos.

4. (a) x1,1 = 0, x1,2 = 0.716, x2,1 = 0.43, x2,2 = 0.858, no points of period three,
x4,1 = 0.383, x4,2 = 0.5, x4,3 = 0.825, x4,4 = 0.877.

(b) z1,1 = −0.428 + 1.616i, z1,2 = 1.428 − 1.616i; z2,1 = −1.312 + 1.847i,

z2,2 = 0.312 − 1.847i; z3,1 = −1.452 + 1.668i, z3,2 = −1.269 + 1.800i,

z3,3 = −0.327 + 1.834i, z3,4 = 0.352 − 1.891i, z3,5 = 0.370 − 1.570i,

z3,6 = 1.326 − 1.845i.

5. (a) Fixed points of period one (0.888, 0.888), (−1.688, −1.688); fixed points of
period two (1.410, −0.610), (−0.610, 1.410).

(b) Lyapunov exponent is approximately 0.4978.

6. (b) J (0, 1.3): scattered dust, totally disconnected.

7. (a) Period-one points (2.76, 0.73), (3.21, −1.01), (3.53, 1.05), (4.33, 0.67).

8. (a)

W = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 1 1 −1 3
−1 0 1 1 3 −1
1 1 0 −1 1 1
1 1 −1 0 1 1

−1 3 1 1 0 −1
3 −1 1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(b) See Example 4 in Chapter 17.
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Sierpiński, 343

dynamics, 159
phenomena, 264

Chapman cycle, 168
characteristic

equation, 246
exponent, 230
multiplier, 177

charge density, 311
chemical

kinetics, 27, 63, 91, 163, 384
law of mass action, 27
reaction, 39
signals, 397
substance, 40

Chua’s circuit, 91, 162, 373, 391, 443



Index 499

circle map, 178
circular frequency of light, 315
classical symmetry argument, 200
classification of critical points, 49
clipping problem, 354
clockwise

bistable cycle, 464
hysteresis, 316

loop, 195
cluster, 400
coarse Hölder exponent, 352
codimension

-1 bifurcation, 144
-2 bifurcation, 144

coexistence, 72
coexisting chaotic attractors, 287
col, 46
colorstyle, 301
commutative ring, 203
competing species, 71, 84, 109
complete synchronization, 384
completely

integrable, 180
reduced, 205

complex
eigenvalues, 46, 246
iterative equation, 322

compound interest, 244
computer algebra, 203
concentrations, 27
conditional Lyapunov exponents, 385
conductivity, 311
conformal mapping, 298
conservation

of energy, 114
of mass, 64

conservative, 114
contact rate, 169
content-addressable memory, 407
continuous Hopfield model, 407
control

curves, 378
engineering, 401

parameter, 375
region, 375

controlling chaos
Hénon map, 380
logistic map, 376

conversational agents, 401
convex closed curve, 96
convoluted surfaces, 152
core area of the fiber, 318
corollary to Poincaré–Bendixson

theorem, 93
correlation dimension, 352
coulomb, 31
Coulomb’s law, 32
counterclockwise hysteresis, 316
coupler, 317
critical point, 35, 50, 148, 152

at infinity, 223
culling, 81

policy, 253
current, 30

density, 311
cusp, 63
cylindrical polar coordinates, 154

Df , 344
Dq , 351
damping, 90

coefficient, 228
dangerous bifurcation, 140
Daphnia dentifera, 80
data mining, 396
databases, 404
defibrillator, 374
defraction, 40
degenerate

critical point, 115
node, 47

degree, 220
lexicographical order, 204

deleted neighborhood, 94
delta learning rule, 399, 402
demo movie, 2



500 Index

dendrites, 397
densityplot, 305
derivative of the Poincaré map test, 177
desired vector, 402
deterministic, 156

chaos, 156, 372
system, 396

dielectric, 312
difference equation, 244, 423
differential amplifier, 312
diffusion limited aggregates (DLA),

356
dimension, 349
direction

field, 44
vector, 44

discrete Hopfield model, 410
dispersive nonlinearity, 313
displacement function, 199
distributive laws, 203
divergence test, 199
Document mode, 2
domain of stability, 73, 158, 300
double

-coupler fiber ring resonator, 315,
332

-scroll attractor, 163
-well potential, 119

driver system, 384, 386
Duffing

equation, 100, 185, 433
system, 373, 449

Dulac’s criteria, 95
Dulac’s theorem, 220

EC , 153
ES , 50, 148, 153
EU , 50, 148, 153
economic model, 248
economics, 68, 288, 294, 356, 384
eigenvector, 48
electric

circuit, 30, 68, 91, 162, 407, 428,
431

displacement, 311
vector, 311

field, 317, 322, 374
strength, 310

flux density, 311
electromotive force (EMF), 32
elliptic integral, 210
energy level, 181
enrichment of prey, 81
environmental effects, 81
epidemic, 41, 62, 81, 90, 169
epoch, 399
equilibrium point, 35
ergodicity, 282, 375
error

backpropagation rule, 403
function, 402

erythrocytes, 287
Euclidean dimension, 351
exact, 21

differential equation, 21
examination-type questions, 445
excitory, 397
existence

and uniqueness limit cycle, 91
theorem, 34

extinct, 72

f (α) spectrum, 351
Fabry–Perot

interferometer, 313
resonator, 313

farad, 32
Faraday’s law

of induction, 310
feedback, 141, 313, 325

mechanism, 417
feedforward single-layer network, 399
Feigenbaum constant, 281
fiber parameters, 327
Fibonacci sequence, 258



Index 501

field, 203
fine focus, 198
first

integral, 114
iterative method, 325, 327, 424
-order difference equation, 244
return map, 174

fish population, 20, 143, 260
Fitzhugh–Nagumo

equations, 89
oscillator, 89

fixed point, 35, 269
period m, 178
period N , 273
period one, 174, 319, 377
period two, 377

fixed-size box-counting algorithm, 355
fixed-weight box-counting algorithm,

355
flow, 91
focal values, 199
fold bifurcation, 144
forced system, 183
forward rate constant, 28
fossil dating, 39
fractal, 338, 345

attractor, 158, 344
dimension, 344

Cantor set, 345
Koch

curve, 345
square, 345
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