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In this paper we report numerical and experimental studies of the dynamic control of the inter-anode plasma
of a double electrical discharge and of a system of two coupled nonlinear oscillators modeling this plasma. We
compare the transition between chaotic dynamics and periodic dynamics induced by a sinusoidal perturbation
and by small-dispersion Gaussian noise. Besides considerable differences between the effect of the two types
of perturbation we also find important similarities. For small amplitude, both the sinusoidal and the white noise
perturbations can induce the system to change from chaotic to regular dynamics. In the case of sinusoidal
perturbation, the transition time from the chaotic to regular state has a definite duration that depends on the
values of the perturbation parameters. The suppression of the perturbation has no influence on the state — the
system remains in the same regular state. Subsequent reinstatement of the same type of perturbation with the
same amplitude does not change the periodic state of the system but, for considerably higher amplitude, the
system is switched back to its chaotic state. For moderate-amplitude sinusoidal perturbation, intermittent
transitions between the chaotic and regular states is observed. Most of these predictions of the model have been
observed experimentally in a system of two coupled electrical discharges. Our results suggest practical meth-
ods that can be used for controlling the discharge plasma dynamics.
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I. INTRODUCTION

In recent years, dynamic control of nonlinear systems has
become a challenging subject in various interdisciplinary
fields. Numerical simulation and experimental methods were
reported in physical, chemical, and biological systems with
major impact on many aspects of science and engineering
[1–10]. A lot of theoretical and experimental work is dedi-
cated to phase synchronized chaos[11–16] and also to lag
synchronization[17]. In addition to the synchronization of
mutual chaotic oscillators, coupled nonlinear oscillators ex-
hibit a diversity of fundamental dynamical phenomena when
the nonlinearity or the coupling strength is increased.

The plasma of electrical discharges is a highly nonlinear
system that performs a variety of nonlinear oscillations. The
study of nonlinear nonequilibrium phenomena in such ex-
tended systems is one of the most active areas of research
[18–21]. It is demonstrated that many of these oscillatory
phenomena are related to spatial charge structures(SCS’s)
generated according to a self-organized scenario[22].

Since for some applications purely harmonic oscillations
are required, it is necessary to suppress the higher harmonics
or to change the chaotic behavior into a periodic one. This is
possible by controlling the discharge with an external circuit
[23]. Also, because of the strong nonlinearity of the SCS’s
formed in plasma, the intrinsic noise in the system can in-
duce uncorrelated oscillations of the current, corresponding
to jumps of the structure between various states. Since it is
very difficult to control the internal noise level experimen-
tally, an alternative is to inject noise that can be controlled
from outside. The effect of additive noise on chaos control
has been the subject of our recent numerical and experimen-
tal investigation[24]. Depending on the relation between the

characteristics of the external circuit(frequency and ampli-
tude) and the parameters of the plasma oscillations, different
types of synchronization, periodic pulling, period doubling
bifurcations, and chaos were reported[25–30].

This study is a consequence of experimental measure-
ments carried out on the oscillations of the plasma generated
in the interanode space of a double-plasma-discharge system.
It was found that the nonlinear phenomena are related to the
dynamics of SCS’s — in the form of double layers—and that
various nonlinear dynamics observed are satisfactorily repro-
duced by a system of equations[28,29] representing a modi-
fied version of two bidirectionally coupled van der Pol oscil-
lators modeling individually the two discharges.

In this work we present the effect of the sinusoidal per-
turbation on the dynamics of the model system with identical
nonlinearity in two situations: for very small amplitude(a
few percent of the average amplitude of the free oscillation
of the system) and for relatively large amplitude(represent-
ing an important fraction of the amplitude of the system). We
compare the results with the effect obtained by replacing the
sinusoidal perturbation with Gaussian noise. Besides consid-
erable differences between the two possibilities of dynamic
control we also find important similarities. Most of the pre-
dictions of the model have been observed experimentally in a
system of two coupled electrical discharges.

II. EXPERIMENTAL SETUP AND
COMPUTATIONAL MODEL

A detail of the experimental setup used is shown in Fig. 1.
For further details, see[29]. The two adjacent glow dis-
chargesK1A1 andK2A2 run independently between the plane
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cathodesK1, K2 and the cylindrical anodesA1, A2. The an-
odes are biased one with respect to the other by the dc source
Um and the perturbationfstd is connected in series withUm.
Here, fstd is either a sinusoidal voltage generator or a white
noise voltage generator. The flowing working gas is argon at
a pressure around 0.2 Torr and the parameters of the indi-
vidual discharges have values typical for glow discharges.
The oscillations of the discharge current flowing between the
two anodes were recorded as a voltage drop on the load
resistor R using a digital data acquisition technique. We
study the dynamics of the charge structures formed in the
interanode region(denoted CS in Fig. 1) as reflected in the
temporal behavior of the current flowing between the two
anodes.

The various nonlinear dynamics observed in the behavior
of the double-electrical-discharge plasma are satisfactorily
reproduced by the following model system of equations
[24,29]:

ẋ1 = x2 + mx4, s1d

ẋ2 = − csx1
2 − 1dx2 − x1 + fstd + mx4 + sm− ndx3 + qm, s2d

ẋ3 = x4 − mx2, s3d

ẋ4 = − dsx3
2 − 1dx4 − x3 + fstd − mx2 − sm− ndx1. s4d

In the case of sinusoidal perturbation

fstd = ecosx5, s5d

and an additional equationẋ5=2pg, with g the frequency of
the perturbation, is added to the system(1)–(4) for making it
autonomous.

As random perturbation, we consider a stationary Gauss-
ian noise characterized by zero mean andd correlated in
time:

fstd = cstd,kcstdl = 0,kcstdcst8dl = 2s2dst − t8d, s6d

wheres is the standard deviation,s2 being considered as a
measure for the noise intensity.

The model can easily be recognized as a modified version
of a system of two coupled van der Pol oscillators modeling
individually the two discharges. They are coupled by a dc
biasing on which a small sinusoidal or white noise voltage is
superimposed. The dc biasing is modeled by the parameter
m, which in this study plays the role of control parameter.
We consider the effect of these perturbations on the dynam-
ics of the model system with identical nonlinearity of the two
oscillatorssc=d=1d but slightly different values of these pa-
rameters give essentially the same results[29]. The constant

n takes into consideration the fact that the mutual interaction
between the oscillators is smaller than the self-coupling rate.
The constantq stands for the slight asymmetry between the
two discharges. The values used in the present simulation are
n=0.01 andq=0.01.

III. PERTURBATION WITH SINUSOIDAL SIGNAL

First, we present the behavior of the system free of any
perturbation. This is most conveniently observed from the
bifurcation diagram forx1 shown in Fig. 2(a) for a certain
choice of initial conditions[32,33]. For values of the control
parameter belowm=1.35, the dynamics of the system con-
sists of periodical oscillations. Form in excess of this value,
the dynamical characteristics change into a chaotic regime.
In the range of periodic behavior, the system can evolve to a
stable state(limit cycle) for m,1.25 or to one of a pair of
stable states(for m.1.25).

In the latter case, for an established set of initial condi-
tions, access to one or the other of the two states is decided
by the value of the control parameter(the coupling between
the oscillators). This is illustrated in Fig. 2(b), which shows
the phase portrait projected on thesx1,x3d plane, on the left,
the situation corresponding to the two stable limit cycles(for
m=1.29 andm=1.31) and, on the right, the chaotic oscilla-
tions corresponding to values ofm in excess ofm=1.4.

FIG. 1. A detail of the experimental setup.

FIG. 2. (a) Bifurcation diagram forx1. The initial conditions are
x1=10, x2=x3=x4=0. (b) Phase portrait projected on thesx1,x3d
plane: left, limit cycles form=1.29 andm=1.31; right, chaos for
m=1.41.

FIG. 3. Upper trace: time seriesx1std in the free(unperturbed)
evolution of the system. Middle trace: the perturbation. Bottom
trace: time seriesx1std in the presence of the perturbation shown by
the middle trace.
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For a given value ofm, the state of choice depends on the
initial conditions. In one of these states, the amplitude of the
first oscillator x1 is large and the amplitude of the second
oscillator x3 is small and vice versa in the other[Fig. 2(b),
left]. The structure of the spectrum of free oscillation is simi-
lar to that shown in Figs. 5(b) and 5(c). The only difference
between the spectra corresponding to the two states consists
in the energy distribution between the fundamental and its
harmonics. In the large-amplitude state, the oscillation is
closer to sinusoidal(the ratios of the amplitude of the har-
monics over the fundamental are very small). In the other
state the fundamental frequency is the same but the energy
distribution is more in favor of the harmonics.

These results show that in the phase space of the system,
between the two stable dynamical equilibrium states a cha-
otic attractor exists and also that the spatial separation be-
tween this chaotic attractor and the two limit cycles is not
very large.

The sinusoidal perturbation is considered in two situa-
tions: for very small amplitude(e, a few percent of the av-
erage amplitude of the free oscillation of the system) and for
relatively large amplitude(representing an important frac-
tion, above 30% of the amplitude of the unperturbed oscilla-
tion). For amplitudes of the sinusoidal perturbation below
3% of the amplitude of the unperturbed system the chaotic
behavior persists. Also, for amplitudes in the interval
15% –25% no transition to a regular state was observed.

In the case of small-amplitude perturbation, we consider
an interval of values of the control parameterm in excess of

1.39, where the behavior of the unperturbed system is cha-
otic, as shown by the bifurcation diagram on Fig. 2(b).

The effect is clearly visible in Fig. 3. Here, the upper trace
is the time seriesx1std in the free(clearly chaotic) evolution
of the system. The bottom trace represents the same time
series in the presence of the perturbation shown by the
middle trace. We mention that the amplitude of the perturba-
tion and the amplitude ofx1 in Fig. 3 are not represented at
the same scale — the middle trace amplitude is only 3% of
the lower trace amplitude. In the presence of perturbation,
the system evolves towards a periodic state after a certain
time, always the same for fixed parameters of the perturbing
signal (amplitude and frequency), but different for different
values of the parameters. We should emphasize that the de-
pendence of this time interval on the values of both the am-
plitude and frequency of the perturbation is characterized by
fractal structure.

As observed from Fig. 3, subsequent removal of the per-
turbation does not change the periodic dynamics. This shows
that the role of the perturbation mainly consists in pushing
the trajectory out of the basin of the chaotic attractor and into
the basin of a periodic attractor which is in very close prox-
imity with the chaotic one.

If the perturbation is reinstated with the same amplitude,
the system remains in the same regular state. Reinstated per-
turbation with an amplitude 5–6 times larger is necessary to
push the system back to the chaotic state, demonstrating that
the periodic state once reached is robust. This behavior is
presented in Fig. 4.

The situation discussed is well illustrated by the spectra
shown in Figs. 5(a)–5(c). The spectrum in Fig. 5(a) corre-
sponds to the chaotic time series(upper trace on Fig. 3),
while the spectra in Figs. 5(b) and 5(c) correspond to peri-
odic states obtained with perturbing signals of the same am-
plitude but with different frequencies(marked by the vertical
arrow in each figure). Irrespective of the perturbation fre-
quency, the system is always pushed to the same state, char-
acterized by the frequency of the free oscillation.

The situation is entirely different for perturbation of large
amplitude(around 30% of the amplitude of the free oscilla-
tion of the system). This is clearly observed from the bifur-
cation diagrams shown in Fig. 6 for three different values of
the amplitudee as shown on each graph.

We choose a different way of presenting the dynamics.
For most of the range of control parameters investigated, the

FIG. 4. Upper trace: perturbation removed and reinstated later.
Bottom trace: time seriesx1std in the presence of the perturbation
shown by the upper trace. Reinstatement of the same perturbation,
but with considerable larger amplitude, throws the system back to
chaotic dynamics.

FIG. 5. The spectra correspond to(a) chaotic time series(upper trace in Fig. 3), (b) periodic states obtained with perturbing signal with
frequency(marked by the arrow) smaller than the free oscillation frequency, and(c) periodic states obtained with perturbing signal with
frequency(marked by the arrow) larger than the free oscillation frequency.
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perturbation has the opposite effect as compared with that of
small-amplitude perturbation—namely, to push the trajectory
out of the basin of the periodic attractor and into the basin of
the chaotic attractor. However, there are very small intervals
of values of the control parameter for which the system syn-
chronizes on frequencies determined by the perturbation fre-
quency, mainly subharmonics thereof. The position and
range of the periodic windows strongly depend on the pa-
rameters of the perturbation. This is most conveniently ob-
served by a stroboscopic investigation at frequencyg as

shown by the diagrams in Fig. 7 for values of the amplitude
e=1.8 ande=1.9. This type of investigation is better than the
bifurcation diagram because it allows the observation of in-
termittent dynamics, which on the conventional bifurcation
diagram appears as chaotic. This is clearly observed in one
of the time series in the upper graph.

The spectra corresponding to the same values of the per-
turbation parameters as in Fig. 7 are shown on Fig. 8 form
=1.17, e=1.9 (left) and m=1.19, e=1.8 (right). Here, the
arrows mark the perturbation frequency. Slightly different
frequencies(equal amplitudes) generate considerably differ-
ent spectra.

For intermediate values of the perturbation amplitude(in
the neighborhood of 20% of the amplitude of the free oscil-
lation) the system can be intermittently entrained by the per-
turbation, as clearly seen from Fig. 7.

IV. PERTURBATION WITH GAUSSIAN NOISE

In the case of perturbation by noise, the functionfstd in
the system(1)–(4) is defined by Eqs.(6). The Gaussian noise
is generated according to the Box-Muller algorithm[31]. We
consider values of the noise amplitudes in the range 0.01–
0.2, which represents less than 5% of the amplitude of the
free oscillations of the system.

By contrast to the situation with small-amplitude sinu-
soidal perturbation, where for fixed values of the perturba-
tion parametersse,gd the duration of the evolution of the

FIG. 6. Bifurcation diagrams forx1 in the presence of perturba-
tion with various amplitude marked by the value ofe in each graph.

FIG. 7. Time seriesx1=x1std stroboscopically taken during the
uniform variation of the control parameterm in steps of 0.005 for
two different amplitudese of the perturbing force:e=1.8, minitial

=1.1 (upper picture); e=1.9, minitial =1.1 (lower picture).

FIG. 8. Spectra corresponding to two different values of the
perturbation parameters, the same as in Fig. 7, form=1.17,e=1.9
(left); m=1.19,e=1.8 (right). The frequency of the perturbation is
marked by the arrows.

FIG. 9. Upper trace: time seriesx1std in the free(unperturbed)
evolution of the system. Middle trace: the perturbation, Gaussian
noise. Bottom trace: time seriesx1std in the presence of the pertur-
bation shown by the middle trace.
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system from chaos to periodic oscillation is entirely predict-
able, here, as expected, no prediction is possible. In the range
of noise intensity where transition from the chaos to periodic
state is observed, the system ends up in one or the other of its
two stable states. Similar results were obtained when a uni-
form random noise is used instead of the Gaussian noise.
After the transition, the removal of the noise is not changing
the state of the system, as shown in Fig. 9.

Reinstatement of noise with the same or slightly larger
intensity has no effect on the periodic state. However, rein-
statement of a noise with considerably larger intensity throws
the system back into the chaotic state.

V. EXPERIMENTAL RESULTS

In this section we present experimental results on the ef-
fect of small-amplitude sinusoidal perturbation and prelimi-
nary results on the synchronization with Gaussian noise. Ex-
perimental results on the synchronization with large-
amplitude sinusoidal perturbation(forcing) were extensively
presented in previous works[28–30].

For sinusoidal perturbation of smaller amplitude, we man-
aged to obtain an experimental behavior close to that pre-
dicted by the computational model and shown in Figs. 3 and
4. The experimental results for the biasing voltageUm
=41 V are presented in Figs. 10 and 11.

The upper graph in both figures shows the sinusoidal per-
turbation from the external signal generator that is turned on
and then turned off after a certain time. In Fig. 10 the am-
plitude of the perturbation is considerably smaller than in
Fig. 11. The lower graphs in both pictures show the fluctua-
tion of the interanode current measured as the voltage drop
on the load resistor. The bottom graph in Fig. 10 demon-
strates that the system, initially in a chaotic state, is pushed
to a regular state and remains in this state after the switching
off of the perturbation. This behavior is in agreement with
the predicted situation presented in Fig. 3.

The bottom graph in Fig. 11 shows that the system ini-
tially in a periodic state is desynchronized by a perturbation
of higher amplitude and remains in the chaotic state after the
switching off of the perturbation. This behavior is in agree-
ment with the predicted situation presented in Fig. 4. The
small jump in the average current that appears on application

FIG. 10. Upper graph: on and off application of the low-
amplitude perturbation from the external sinusoidal signal genera-
tor. The bottom graph: simultaneous fluctuations of the interanode
current measured as voltage fluctuations on a load resistor.

FIG. 11. Upper graph: on and off application of the higher-
amplitude perturbation from the external sinusoidal signal genera-
tor. The bottom graph: simultaneous fluctuations of the inter-anode
current measured as voltage fluctuations on a load resistor.
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of the perturbation is caused by a sudden change in the dy-
namics of the electrical discharge(disruption of the charge
structures).

So far, for Gaussian noise, we were unable to observe the
effect in the time series as clearly as in the case of sinusoidal
perturbation. However, a transition to the periodic state in-
duced by small-amplitude Gaussian noise was observed us-
ing spectral analysis, as shown in Fig. 12. Here, the time
series(left) and FFT spectra(right) for three experimental
situations are presented. The upper graphs refer to the free
running of the system in conditions of chaotic behavior for a
value of the dc biasing potentialUm=41 V. The middle
graphs correspond to running under small-amplitudes10%d
sinusoidal perturbation with the frequency marked by the
arrow in the FFT spectrum, for the same value of the dc
biasing. The lower graphs represent the transition from chaos
to periodic dynamics obtained under a small-amplitude white
Gaussian noise and the same biasing. We use a noise signal
generator with an equivalent standard deviation ofUs
=10 V rms, coupled to the discharge system through an at-

tenuation network. The lower graphs in Fig. 12 correspond to
a noise levelUs/20. It should be observed that in the case of
perturbation by noise, beside the main frequency, the same as
in the case of sinusoidal perturbation(about 20 kHz), an-
other spectral component at much lower frequency is pro-
moted. This behavior seems to indicate a stochastic reso-
nance phenomenon and is one of our interests for further
investigations.

For moderate noise amplitudesUs/5d, the change induced
in the behavior of the system is different. We did not manage
to obtain a transition to the periodic state at this noise level
for the above values of the system parameters. For lower
values of the biasing, where the system behaves regularly, a
higher-level noise usually induces transitions from periodic
dynamics to chaotic ones.

The physical mechanism of the transition between chaotic
and regular dynamics is correlated to the dynamics of SCS’s
such as intermittent detachment of the double layer from the
SCS and changes in their moving phase[25]. Also it is ob-

FIG. 12. Time series(left) and fast Fourier transform(FFT) spectra(right): upper graphs, chaotic behavior for free running of the system;
middle graphs, running under small amplitudes10%d sinusoidal perturbation with the frequency marked by the arrow in the FFT spectrum;
lower graphs, running with small-amplitude white Gaussian noise with an equivalent standard deviationUs=10 V rms and 20-fold attenu-
ation. The results correspond to the same biasingUm=41 V.
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served that some moving phase SCS’s are more stable
against noise than others.

VI. CONCLUSIONS

The results of dynamic control obtained by a sinusoidal
perturbation are compared with the effect obtained with a
Gaussian noise signal, both theoretically using a computa-
tional model of two perturbed, coupled nonlinear oscillators,
and experimentally using a double-discharge plasma system.

Besides considerable differences between the two possi-
bilities of dynamic control we also find important similari-
ties. For small amplitude, both the sinusoidal and white noise
perturbations can move the system from a chaotic to a peri-
odic state. In the case of small-amplitude sinusoidal pertur-
bation the transition time has a well-defined value depending
on the values of the perturbation parameters. Subsequent re-
instatement of the same type of perturbation but with higher
amplitude switches the system back to its chaotic state.

For large amplitudes, the transition to a regular state can-
not be achieved. However, for sinusoidal perturbations, in-

termittent transitions between chaotic and periodic states are
obtained.

Most of the computation results presented have been ob-
served experimentally in the fluctuations of the interanode
current of a system of the two coupled electrical discharges.
Using a small-amplitude sinusoidal perturbation or a small-
dispersion Gaussian noise, we changed the behavior of our
discharge system from a chaotic state to a periodic state and,
most importantly, the periodic state persisted after removal
of the perturbation. In the case of a random perturbation, the
dynamic control of the experimental system was consider-
ably more difficult. We consider that this could be a conse-
quence of a multiplicative influence between the external and
internal noise, always present in the experimental device.

Our results are of practical importance in suggesting
methods that can be used for controlling the dynamics of a
discharge plasma[34].
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