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Dynamic control by sinusoidal perturbation and by Gaussian noise of a system
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In this paper we report numerical and experimental studies of the dynamic control of the inter-anode plasma
of a double electrical discharge and of a system of two coupled nonlinear oscillators modeling this plasma. We
compare the transition between chaotic dynamics and periodic dynamics induced by a sinusoidal perturbation
and by small-dispersion Gaussian noise. Besides considerable differences between the effect of the two types
of perturbation we also find important similarities. For small amplitude, both the sinusoidal and the white noise
perturbations can induce the system to change from chaotic to regular dynamics. In the case of sinusoidal
perturbation, the transition time from the chaotic to regular state has a definite duration that depends on the
values of the perturbation parameters. The suppression of the perturbation has no influence on the state — the
system remains in the same regular state. Subsequent reinstatement of the same type of perturbation with the
same amplitude does not change the periodic state of the system but, for considerably higher amplitude, the
system is switched back to its chaotic state. For moderate-amplitude sinusoidal perturbation, intermittent
transitions between the chaotic and regular states is observed. Most of these predictions of the model have been
observed experimentally in a system of two coupled electrical discharges. Our results suggest practical meth-
ods that can be used for controlling the discharge plasma dynamics.
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I. INTRODUCTION characteristics of the external circyftequency and ampli-

In recent years, dynamic control of nonlinear systems hal!d® and the parameters of the plasma oscillations, different
become a challenging subject in various interdisciplinarylYPeS of synchronization, periodic pulling, period doubling
fields. Numerical simulation and experimental methods werdifurcations, and chaos were repor{@$-3Q.
reported in physical, chemical, and biological systems with This study is a consequence of experimental measure-
major impact on many aspects of science and engineeringents carried out on the oscillations of the plasma generated
[1-10. A lot of theoretical and experimental work is dedi- in the interanode space of a double-plasma-discharge system.
cated to phase synchronized ch4d$-16 and also to lag It was found that the nonlinear phenomena are related to the
synchronization[17]. In addition to the synchronization of dynamics of SCS’s — in the form of double layers—and that
mutual chaotic oscillators, coupled nonlinear oscillators exvarious nonlinear dynamics observed are satisfactorily repro-
hibit a diversity of fundamental dynamical phenomena wherduced by a system of equatiof8,29 representing a modi-
the nonlinearity or the coupling strength is increased. fied version of two bidirectionally coupled van der Pol oscil-

The plasma of electrical discharges is a highly nonlineatators modeling individually the two discharges.
system that performs a variety of nonlinear oscillations. The In this work we present the effect of the sinusoidal per-
study of nonlinear nonequilibrium phenomena in such ex{urbation on the dynamics of the model system with identical
tended systems is one of the most active areas of researdionlinearity in two situations: for very small amplitude
[18-21. It is demonstrated that many of these oscillatoryfew percent of the average amplitude of the free oscillation
phenomena are related to spatial charge struct(8&S’y  of the systemand for relatively large amplitudgepresent-
generated according to a self-organized scer@2p ing an important fraction of the amplitude of the sysjeWile

Since for some applications purely harmonic oscillationscompare the results with the effect obtained by replacing the
are required, it is necessary to suppress the higher harmonisgusoidal perturbation with Gaussian noise. Besides consid-
or to change the chaotic behavior into a periodic one. This igrable differences between the two possibilities of dynamic
possible by controlling the discharge with an external circuitcontrol we also find important similarities. Most of the pre-
[23]. Also, because of the strong nonlinearity of the SCS’sdictions of the model have been observed experimentally in a
formed in plasma, the intrinsic noise in the system can insystem of two coupled electrical discharges.
duce uncorrelated oscillations of the current, corresponding
to jump; of the structure bgtween various states. Sir_1ce it is Il EXPERIMENTAL SETUP AND
very difficult to (_:ont_rol th_e_lnterna_ll noise level experimen- COMPUTATIONAL MODEL
tally, an alternative is to inject noise that can be controlled
from outside. The effect of additive noise on chaos control A detail of the experimental setup used is shown in Fig. 1.
has been the subject of our recent numerical and experimefror further details, se¢29]. The two adjacent glow dis-
tal investigation24]. Depending on the relation between the chargeK;A; andK,A, run independently between the plane
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FIG. 1. A detail of the experimental setup.

cathodeX;, K, and the cylindrical anode&;, A,. The an-
odes are biased one with respect to the other by the dc source
U,, and the perturbatiofi(t) is connected in series with,,

Here, f(1) is either a sinusoidal voltage generator or a white _ o o N
noise voltage generator. The flowing working gas is argon at FIG. 2. (a) Bifurcation diagram f0|xl._The |_n|t|al conditions are
a pressure around 0.2 Torr and the parameters of the indfa™10 X2=Xs=X;=0. (b) Phase portrait projected on trg;,x;)
vidual discharges have values typical for glow dischargespkinle;lllem limit cycles fom=1.29 andm=1.31; right, chaos for
The oscillations of the discharge current flowing between the"™ -+

two anodes were recorded as a voltage drop on the load ) . . . )
resistor R using a digital data acquisition technique. We N takes into cons_lderathn the fact that the mutual mtgractlon
study the dynamics of the charge structures formed in th&etween the oscillators is small_er than the self-coupling rate.
interanode regioridenoted CS in Fig. Jlas reflected in the The constant stands for the slight asymmetry between the
temporal behavior of the current flowing between the twotWo discharges. The values used in the present simulation are
anodes. n=0.01 anqu0.0l.

The various nonlinear dynamics observed in the behavior
of the double-electrical-discharge plasma are satisfactorily
reproduced by the following model system of equations
[24,29:

IIl. PERTURBATION WITH SINUSOIDAL SIGNAL

First, we present the behavior of the system free of any
perturbation. This is most conveniently observed from the
bifurcation diagram forx; shown in Fig. 2a) for a certain
choice of initial conditiong32,33. For values of the control
parameter belown=1.35, the dynamics of the system con-
sists of periodical oscillations. Fon in excess of this value,
the dynamical characteristics change into a chaotic regime.
In the range of periodic behavior, the system can evolve to a
stable statélimit cycle) for m<<1.25 or to one of a pair of
stable stategfor m>1.25.

Xy = Xo + MXg, (1)
Xo == (X — 1)xp — Xq + () + mx,+ (M= n)x3 +qm, (2)

X3: X4 — M, (3)

4= =dOG = DX =g+ f(t) —mxp—(M=-n)xg.  (4)

In the case of sinusoidal perturbation
f(t) = ecoscs, (5

and an additional equatior=2wg, with g the frequency of
the perturbation, is added to the systélp<(4) for making it
autonomous.

In the latter case, for an established set of initial condi-
tions, access to one or the other of the two states is decided
by the value of the control parametghe coupling between
the oscillators This is illustrated in Fig. @), which shows
the phase portrait projected on thg,Xs) plane, on the left,
the situation corresponding to the two stable limit cycfles

As random perturbation, we consider a stationary Gausgn=1.29 andm=1.31) and, on the right, the chaotic oscilla-

ian noise characterized by zero mean ahdorrelated in
time:

f(t) = 90, (1)) = 0L Ylt)) = 20%8(t - t'),  (6)

whereo is the standard deviatiom?? being considered as a

measure for the noise intensity.

The model can easily be recognized as a modified version \WVAAAAANAANANANANNNAAN
of a system of two coupled van der Pol oscillators modeling
individually the two discharges. They are coupled by a dc

tions corresponding to values of in excess oin=1.4.

biasing on which a small sinusoidal or white noise voltage is
superimposed. The dc biasing is modeled by the parameter
m, which in this study plays the role of control parameter.
We consider the effect of these perturbations on the dynam- k|G, 3. Upper trace: time series(t) in the free(unperturbed

ics of the model system with identical nonlinearity of the two evolution of the system. Middle trace: the perturbation. Bottom
oscillators(c=d=1) but slightly different values of these pa- trace: time series,(t) in the presence of the perturbation shown by
rameters give essentially the same res{#if]. The constant the middle trace.
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1.39, where the behavior of the unperturbed system is cha-
otic, as shown by the bifurcation diagram on Figh)2
The effect is clearly visible in Fig. 3. Here, the upper trace

is the time seriex,(t) in the free(clearly chaotig evolution

of the system. The bottom trace represents the same time
series in the presence of the perturbation shown by the
middle trace. We mention that the amplitude of the perturba-
tion and the amplitude of; in Fig. 3 are not represented at
the same scale — the middle trace amplitude is only 3% of
the lower trace amplitude. In the presence of perturbation,

FIG. 4. Upper trace: perturbation removed and reinstated Iatert.he system evolves towards a periodic state after a certain

Bottom trace: time series,(t) in the presence of the perturbation tl_m€, lalwayls_ tfée Sargef for fixed Eara(;nﬁeters Off thg_frf)erturblng
shown by the upper trace. Reinstatement of the same perturbatioﬁ'gna (amplitude and frequengybut different for different

but with considerable larger amplitude, throws the system back tyalues of the parameters. We should emphasize that the de-
chaotic dynamics. pendence of this time interval on the values of both the am-

plitude and frequency of the perturbation is characterized by

For a given value o, the state of choice depends on thefractal structure.
initial conditions. In one of these states, the amplitude of the As observed from Fig. 3, subsequent removal of the per-
first oscillator x, is large and the amplitude of the second turbation does not change the periodic dynamics. This shows
oscillator x3 is small and vice versa in the othgfig. 2b),  that the role of the perturbation mainly consists in pushing
left]. The structure of the spectrum of free oscillation is simi-the trajectory out of the basin of the chaotic attractor and into
lar to that shown in Figs.(B) and 5c). The only difference the basin of a periodic attractor which is in very close prox-
between the spectra corresponding to the two states consisisity with the chaotic one.
in the energy distribution between the fundamental and its If the perturbation is reinstated with the same amplitude,
harmonics. In the large-amplitude state, the oscillation ighe system remains in the same regular state. Reinstated per-
closer to sinusoidalthe ratios of the amplitude of the har- turbation with an amplitude 5—6 times larger is necessary to
monics over the fundamental are very smalh the other push the system back to the chaotic state, demonstrating that
state the fundamental frequency is the same but the enerdlge periodic state once reached is robust. This behavior is
distribution is more in favor of the harmonics. presented in Fig. 4.

These results show that in the phase space of the system, The situation discussed is well illustrated by the spectra
between the two stable dynamical equilibrium states a chashown in Figs. Ea)—5(c). The spectrum in Fig. (8 corre-
otic attractor exists and also that the spatial separation besponds to the chaotic time seriéspper trace on Fig. )3
tween this chaotic attractor and the two limit cycles is notwhile the spectra in Figs.(b) and Kc) correspond to peri-
very large. odic states obtained with perturbing signals of the same am-

The sinusoidal perturbation is considered in two situa-plitude but with different frequencigsnarked by the vertical
tions: for very small amplitudée, a few percent of the av- arrow in each figure Irrespective of the perturbation fre-
erage amplitude of the free oscillation of the systemd for  quency, the system is always pushed to the same state, char-
relatively large amplitudgrepresenting an important frac- acterized by the frequency of the free oscillation.
tion, above 30% of the amplitude of the unperturbed oscilla- The situation is entirely different for perturbation of large
tion). For amplitudes of the sinusoidal perturbation belowamplitude(around 30% of the amplitude of the free oscilla-
3% of the amplitude of the unperturbed system the chaotition of the system This is clearly observed from the bifur-
behavior persists. Also, for amplitudes in the intervalcation diagrams shown in Fig. 6 for three different values of
15% —25% no transition to a regular state was observed. the amplitudee as shown on each graph.

In the case of small-amplitude perturbation, we consider We choose a different way of presenting the dynamics.
an interval of values of the control parametein excess of For most of the range of control parameters investigated, the
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FIG. 5. The spectra correspond(® chaotic time seriegupper trace in Fig. 3 (b) periodic states obtained with perturbing signal with
frequency(marked by the arroyvsmaller than the free oscillation frequency, diel periodic states obtained with perturbing signal with
frequency(marked by the arroplarger than the free oscillation frequency.
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FIG. 6. Bifurcation diagrams fax; in the presence of perturba-
tion with various amplitude marked by the valueedh each graph.

rameters of the perturbation. This is most conveniently obturbation, as clearly seen from Fig. 7.

%

PHYSICAL REVIEW E70, 016613(2004

o
IS

o
[

o
N

02

(=]
S
o

Amplitude (arb. units)
Amplitude (arb. units)

b

=4
o

. . \
0.00 0.05 0.10 0.15 0.00
Frequency (arb. units)

L ' \
0.05 0.10 a5

Frequency (arb. units)

FIG. 8. Spectra corresponding to two different values of the
perturbation parameters, the same as in Fig. 7nferl.17,e=1.9
(left); m=1.19,e=1.8 (right). The frequency of the perturbation is

marked by the arrows.

shown by the diagrams in Fig. 7 for values of the amplitude
e=1.8 ande=1.9. This type of investigation is better than the
bifurcation diagram because it allows the observation of in-
termittent dynamics, which on the conventional bifurcation

diagram appears as chaotic. This is clearly observed in one
of the time series in the upper graph.

The spectra corresponding to the same values of the per-
perturbation has the opposite effect as compared with that dfirbation parameters as in Fig. 7 are shown on Fig. 8rfor
small-amplitude perturbation—namely, to push the trajectory=1.17, e=1.9 (left) and m=1.19, e=1.8 (right). Here, the
out of the basin of the periodic attractor and into the basin oirrows mark the perturbation frequency. Slightly different
the chaotic attractor. However, there are very small intervalérequenciegequal amplitudesgenerate considerably differ-
of values of the control parameter for which the system synent spectra.
chronizes on frequencies determined by the perturbation fre- For intermediate values of the perturbation amplitgide
quency, mainly subharmonics thereof. The position andhe neighborhood of 20% of the amplitude of the free oscil-
range of the periodic windows strongly depend on the pafation) the system can be intermittently entrained by the per-

served by a stroboscopic investigation at frequegcgs

increasing sense of m

increasing sense of m

FIG. 7. Time seriex;=x4(t) stroboscopically taken during the
uniform variation of the control parametar in steps of 0.005 for
two different amplitudes of the perturbing forcee=1.8, Myial
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IV. PERTURBATION WITH GAUSSIAN NOISE

In the case of perturbation by noise, the functi@t) in
the systen{1)—<(4) is defined by Eqg(6). The Gaussian noise
is generated according to the Box-Muller algoritfiad]. We
consider values of the noise amplituagdn the range 0.01—
0.2, which represents less than 5% of the amplitude of the

free oscillations of the system.

By contrast to the situation with small-amplitude sinu-
soidal perturbation, where for fixed values of the perturba-
tion parameterge,g) the duration of the evolution of the

il
A b ———

bation shown by the middle trace.

016613-4

FIG. 9. Upper trace: time serieg(t) in the free(unperturbey
evolution of the system. Middle trace: the perturbation, Gaussian
noise. Bottom trace: time seriag(t) in the presence of the pertur-
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FIG. 10. Upper graph: on and off application of the low-  F!G- 11. Upper graph: on and off application of the higher-
amplitude perturbation from the external sinusoidal signal genera@MPlitude perturbation from the external sinusoidal signal genera-
tor. The bottom graph: simultaneous fluctuations of the interanod&®!- The bottom graph: simultaneous fluctuations of the inter-anode
current measured as voltage fluctuations on a load resistor. current measured as voltage fluctuations on a load resistor.

system from chaos to periodic oscillation is entirely predict- F((j)r smubso!dal perturba_mon oflstr)nakt]ller_ amplhtude, Wﬁ man-
able, here, as expected, no prediction is possible. In the ran € dtg ohtam an exp_enmlentad Ie %V'OI: close tq that pred—
of noise intensity where transition from the chaos to periodicA'Ct_([?he ye; zrciz]memja:?tlrzrslilt?c}o? t?]r:a Eiaosﬁn Invg;g—j 3an
state is observed, the system ends up in one or the other of |t_s41 V are presented in Fias. 10 and 11 9 g&

two stable states. Similar results were obtained when a uni- The u gr raoh in bothgfi. ures showé the sinusoidal per-
form random noise is used instead of the Gaussian nois?. bati pfp gthp ¢ | 9 | tor that is t dp
After the transition, the removal of the noise is not changing urbation from the external signal generator that Is turned on
the state of the system, as shown in Fig. 9. ar_ld then turned off afte_r a _certaln _t|me. In Fig. 10 the am-

Reinstatement of noise with the same or slightly Iargerpl.'tUde of the perturbanon. is conS|_derany smaller than in
intensity has no effect on the periodic state. However, reinf'g' 11 Th? lower graphs in both pictures show the fluctua-
statement of a noise with considerably larger intensity throw§Ion of the mtera_mode current measured as the voltage drop
the system back into the chaotic state. on the load resistor. Th_e _b_ottor_n graph n Fig. 10. demon-

strates that the system, initially in a chaotic state, is pushed
to a regular state and remains in this state after the switching

V. EXPERIMENTAL RESULTS off of thg pertu.rbati.on. This beha_vior.is in agreement with
the predicted situation presented in Fig. 3.

In this section we present experimental results on the ef- The bottom graph in Fig. 11 shows that the system ini-
fect of small-amplitude sinusoidal perturbation and prelimi-tially in a periodic state is desynchronized by a perturbation
nary results on the synchronization with Gaussian noise. Exef higher amplitude and remains in the chaotic state after the
perimental results on the synchronization with large-switching off of the perturbation. This behavior is in agree-
amplitude sinusoidal perturbatigforcing) were extensively ment with the predicted situation presented in Fig. 4. The
presented in previous work28-3(. small jump in the average current that appears on application

016613-5



CRISTESCU, STAN, AND ALEXANDROAEI

PHYSICAL REVIEW E70, 016613(2004

0.25
0.154
Im ~ 020 |
% 0.104 g
3 =
g o) £ 015}
8o g
) o 010}
b -]
2 0001 2
a B 005
E -0.05 E
: T , ; , 0.00 -
0 200 400 600 800 1000 0.0 20 40 60 80 100
Time (us) Frequency (kHz)
0.15 0.25
)
‘T 0.0 ~ 020}
S 2
g 5
© o.0s P 015}
3 A
= g oo}
% 0.00 a l
B 005}
E -0.05- E l l
T T T T y O.W TV alalie l b "
0 200 400 600 800 1000 0.0 20 40 60 80 100
Time (us) Frequency (kHz)
0.25
0.15
E & 020
‘E 010 =
5 5 0415
g ] g°
& o &
@ 1 o 0.10
pe) ©
2 om 2
a 2 005
£ E
o -0.05- <
i i i i , 0.00 | ., el aal d
0 200 400 800 1000 0.0 20 40 80 100
Time (us) Frequency (kHz)

FIG. 12. Time seriedeft) and fast Fourier transforigiFT) spectraright): upper graphs, chaotic behavior for free running of the system;
middle graphs, running under small amplitud®%) sinusoidal perturbation with the frequency marked by the arrow in the FFT spectrum;
lower graphs, running with small-amplitude white Gaussian noise with an equivalent standard dévjatidhV rms and 20-fold attenu-
ation. The results correspond to the same biaklpg41 V.

of the perturbation is caused by a sudden change in the dyenuation network. The lower graphs in Fig. 12 correspond to

namics of the electrical dischargdisruption of the charge a noise levelJ /20. It should be observed that in the case of

structures ) ) perturbation by noise, beside the main frequency, the same as
So far, for Gaussian noise, we were unable to observe thg, the case of sinusoidal perturbatigabout 20 kHz, an-

effect in the time series as clearly as in the case of sinusoid@ther spectral component at much lower frequency is pro-

perturbatlon. However, a transition to the perlodlc state 'n'moted. This behavior seems to indicate a stochastic reso-

_duced by small—amplltude Gau53|_an noise was observeq YRance phenomenon and is one of our interests for further
ing spectral analysis, as shown in Fig. 12. Here, the t'm?nvestigations
s§r|e§(left) and FFT spectraright) for three experimental For moderéte noise amplitudsl./5), the change induced
situations are presented. The upper graphs refer to the free P s h 9

running of the system in conditions of chaotic behavior for al the behavior of the system is different. We did not manage

value of the dc biasing potentidl ;=41 V. The middle O obtain a transition to the periodic state at this noise level
graphs correspond to running under small-amplit@tieos)  for the above values of the system parameters. For lower
sinusoidal perturbation with the frequency marked by thevalues of the biasing, where the system behaves regularly, a
arrow in the FFT spectrum, for the same value of the ddigher-level noise usually induces transitions from periodic
biasing. The lower graphs represent the transition from chaodynamics to chaotic ones.

to periodic dynamics obtained under a small-amplitude white The physical mechanism of the transition between chaotic
Gaussian noise and the same biasing. We use a noise sigrid regular dynamics is correlated to the dynamics of SCS’s
generator with an equivalent standard deviation W  such as intermittent detachment of the double layer from the
=10 V rms, coupled to the discharge system through an atSCS and changes in their moving ph§28]. Also it is ob-
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served that some moving phase SCS’s are more stabtermittent transitions between chaotic and periodic states are
against noise than others. obtained.

Most of the computation results presented have been ob-

served experimentally in the fluctuations of the interanode

VI. CONCLUSIONS current of a system of the two coupled electrical discharges.

The results of dynamic control obtained by a sinusoidaIU_S’ing a small-am_plitude_ sinusoidal perturbation or a small-
perturbation are compared with the effect obtained with ad!spersmn Gaussian noise, we changed the peh_awor of our
Gaussian noise signal, both theoretically using a compu'[ac—j'S‘Ch"’.Irge system from a ghgotlc state to a periodic state and,
tional model of two perturbed, coupled nonlinear oscillators,mOSt |mportantl_y, the periodic state persisted after r_emoval
and experimentally using a double-discharge plasma syste fthe perturbaﬂon. In the case of a random perturbatlon_, the

Besides considerable differences between the two poss ynamic C°'?”.°' of the expgrlmental system was consider-
bilities of dynamic control we also find important similari- 2Ply more difficult. We consider that this could be a conse-

ties. For small amplitude, both the sinusoidal and white nois@uence of a multiplicative influence between the external and

perturbations can move the system from a chaotic to a perf-nternal noise, always present in Fhe experime_ntal devicg.
Our results are of practical importance in suggesting

odic state. In the case of small-amplitude sinusoidal pertur- hods th b df lina the d . f
bation the transition time has a well-defined value dependinr%“_et ods that can be used for controlling the dynamics of a

on the values of the perturbation parameters. Subsequent ischarge plasmgB4].
insta’gement qf the same type of perturbation but.with higher ACKNOWLEDGMENT
amplitude switches the system back to its chaotic state.
For large amplitudes, the transition to a regular state can- This work was partially supported by CERES through
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