
s

ia

PHYSICAL REVIEW E 66, 016602 ~2002!
Control of chaos by random noise in a system of two coupled perturbed van der Pol oscillator
modeling an electrical discharge plasma
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The control of chaos in nonlinear systems by different methods is still a high interest topic particularly when
this is achieved by random noise as in this work. The change of chaotic dynamics into periodic dynamics
induced by random noise in a system of two coupled perturbed van der Pol oscillators and comparison with the
experimentally observed behavior of a double discharge plasma that it models is presented. Methods specific to
nonlinear analysis such as phase portraits, Lyapunov exponents, and Fourier spectra are used to demonstrate
the changeover from chaotic to regular dynamics induced by random noise. A phase diagram determines the
range of noise parameters corresponding to the lowest orders of an observed bifurcation sequence of 332n

type and particulars of the transitions are presented.
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I. INTRODUCTION

The presence of noise is a highly complicating aspec
both the theoretical and experimental analysis of the dyn
ics of nonlinear systems. The interplay between noise
chaotic behavior is very intricate and sometimes, as in
case of 1/f noise, the two notions could not be separa
even conceptually.

In theoretical studies on dynamical systems described
differential/difference equations, the effect of noise is re
tively easily studied because the behavior is obtain
through computation with and without the noise terms. F
some particular situations, the addition of noise can h
predictable results. Any effect that occurs at some w
defined value of the control parameter will be smeared
by the noise that manifests itself as small fluctuations in
control parameter, especially for observations of the attra
characteristics on scales smaller than the noise level@1,2#. In
particular, this limits the possibility of observing high bifu
cation orders in bifurcation sequences@3#. If noise is present,
then a system that is close but not yet in a crisis can
‘‘bumped’’ into and out of the crisis region by the noise@4,5#.
In intermittency, noise can change the time between bu
by orders of magnitude@6#.

The correlation dimensionC(R) calculated could be af
fected by the presence of noise. If the amplitude of nois
s, then we expect the noise to dominate forR,s, whereR
is the distance from a given point such that all the attracto
within a radiusR. Since noise is supposedly random, t
noise-dominated data will tend to spread out uniformly in
domain of the state space and we expect to find a correla
dimension equal to the state space dimension for small
ues of R @1,2#. The noise tends to make the slope of t
ln C(R) vs lnR larger for small values ofR.

In real nonlinear physical systems, the situation is s
more complicated. The dynamic behavior of the system
obtained by carrying out measurements of characteristic
rameters against a constant background of noise that h
pers measurement and corrupts the data. Separating the
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tribution to the data of the intrinsic dynamics and of t
random noise is an extremely tricky problem. Even giving
answer to the question: is the irregularity~nonperiodicity! of
the data due to nonlinear determinism or rather due to r
dom inputs to the system or random fluctuations of the
rameters is no trivial matter.

Various testing algorithms for discerning between t
nonlinearity and linear stochastic behavior have been p
posed@7–9#. Also, different methods of analysis have be
devised@10–14# aiming to replace noisy measurements
better values that contain less noise. From the previous c
sideration, the noise appears as a nuisance to the dyna
physicist. However, this point of view has slightly chang
during the last decade since the pioneering work of Ott, G
bogi, and Yorke@15# that stimulated considerable interest
the control of chaos and synchronization by various per
bations applied to the system including random no
@16–24#.

The present work is a study of the effect of random no
on a system of two perturbed coupled van der Pol oscilla
modeling a double electrical discharge plasma. Compari
between the experimental data and the results of the id
noiseless model is quite good for almost all the range of
control parameter used in the study@25# with the exception
of a small interval. The addition of noise terms to the ide
equations extends the agreement to the entire range o
control parameter covered in this work.

Subsequently, the study is extended to additional no
induced dynamics consisting of the control of chaos for
particular system of two perturbed coupled van der Pol
cillators, mainly to an induced bifurcation sequence of
32n type. Details of the transition from one period to th
next are presented.

II. EXPERIMENTAL STUDY

The experimental setup was presented in detail in R
@25,26#. It consists of a system allowing simultaneous fun
tioning of two electrical discharges sustained by sepa
voltage sources. They are running in the same discharge
©2002 The American Physical Society02-1
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filled with argon at low pressure. The anodes of the t
discharges are situated facing each other at a distance
few centimeters. They are biased one against the other
continuous voltage source whose voltageUm is considered
as the experimental control parameter. An additional c
pling is possible by connecting in series with the bias
source a sinusoidal voltageUe with amplitude (5210) % of
the continuous biasing. Without this forcing the discha
shows periodic dynamics with a fundamental frequency t
slowly changes with changing of the control parameter.

The global behavior of the system as a function of
continuous biasing and in the presence of the sinusoidal
nal with a frequency in the neighborhood of 2.5 times t
free oscillation frequency shows intervals of regular and c
otic dynamics as well as transitions to chaos by differ
mechanisms. This behavior is correlated to the characteri
of the space charge structures such as double layers~DL!
@27#.

It was observed that the position and the characteristic
one or more space charge structures generated in the in
node space depend onUm , on the discharge currentsI 1 ,I 2,
and also on the gas pressurep. For certain values of the
amplitude and frequency ofUe , quasistationary plasma for
mations can appear@28#. In this work, the amplitude ofUe is
kept constant so that it can be considered as generati
forcing regime.

Experimental investigations of the current-voltage char
teristics,I vs Um , correlated with plasma potential and lig
intensity distributions, which reveal the formation of DL, a
extensively presented in Refs.@28,29#. It is also shown that
for values of a DL potential drop larger than the ionizati
potential of the working gas, the structure becomes unst
and the currentI has periodical oscillations.

In this work we present the influence of noise on pheno
ena taking place in the interanode space in the presenc
both the continuous biasing and the sinusoidal forcing.

III. COMPUTATION MODEL

In Ref. @25# we proposed a model based on physical
guments similar to those considered in Ref.@29#. The two
discharge plasmas that generate space charge structur
the interanode space are considered as independent va
Pol oscillators with a special type of coupling and stren
determined by the control parameter denoted asm.

The biasing dc and ac potentials are modeled as sep
terms. The periodic perturbation of amplitudee and fre-
quency g is introduced in the conventional way. Cons
quently, we consider the dynamics of the following fiv
equations system that differ from that given in Ref.@25# by
the presence of the noise terms:

ẋ15x21mx41D1j1 ,

ẋ252c~x1
221!x22x11e cosx51mx41~m2n!x31qm,

ẋ35x412mx21D2j2 ,

ẋ452 f ~x3
221!x42x32e cosx52mx22~m2n!x1 ,

ẋ552pg.
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The incorporated additional noise terms areD1j1 and
D2j2. Herej i ( i 51,2) are produced by a random noise ge
erator used to provide a random real number uniformly d
tributed in a prescribed interval whose magnitude will
denotedA and called ‘‘the noise range.’’ This number is mu
tiplied by a constantD intended to set the maximum ampl
tude of the noise and to give a measure to the standard
viation s. The correlation is ofd type, namely,j(t)j(t
1t);A2d(t).

The study in the absence of noise (D150,D250), pre-
sented in Ref.@25#, shows that computational reproducing
the three experimental elements:~i! time series,~ii ! phase
portraits, and~iii ! fast Fourier-transform spectra requires
very precise tuning of the model control parameterm. The
plot of the values ofm vs the corresponding values of th
continuous biasing potentialUm shows a linear dependenc
This result was interpreted as demonstration of the valid
of the model.

However, in a certain interval of values of the continuo
biasing potential, the experimental results were in appa
contradiction with the results of the model. This situation
easily understood on the basis of the bifurcation diagram
the interanode current modeled byx12x3. This diagram,
shown in Fig. 1, represents the global dynamics of the s
tem without noise.

In the region enclosed within an oval in the figure, corr
sponding to anUm interval of 0.5 V around 33 V, experimen
tal data show no discontinuity in the period three dynami
A blow up of this region of the bifurcation diagram is show
in Fig. 2.

The noiseless system of equations represents an idea
situation. To make it more realistic, we considered that
noise, always present in an electrical system, has to be
flected by the model. The origin of noise is related to t

FIG. 1. Bifurcation diagram for the interanode current, mode
by x12x3.

FIG. 2. A blowup of the region of the bifurcation diagram e
closed within an oval in Fig. 1.
2-2
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fluctuations generated by the thermal motion of the amb
electrons and ions@30#.

In this study we consider only the case of identical no
functions,D1j15D2j2.

For convenient values of the noise parametersD and A,
we demonstrate that, for any value ofm in the interval of
chaotic dynamics around 0.850, the irregular dynamics
transformed into period three dynamics.

In this way, the noise rehabilitates the model making
generate an output in agreement with the experiment for
whole range of control parameter considered. The value
the noise parameters in the corresponding interval can
interpreted as a measure of the real noise present in the
perimental system.

The analysis of the system dynamics is carried out us
the following methods: phase portrait, Lyapunov expone
and Fourier spectrum.

The noise-induced transition from chaotic behavior to
riod three dynamics is illustrated in Fig. 3, which prese
phase portraits for three arbitrary values of the control
rameter in the chaotic region aroundm50.850, namely,m
50.847(a), m50.850(b), andm50.857(c). The graphs on
the left correspond to the noiseless behavior~chaos or very
high periods! and the graphs on the right show the peri
three dynamics induced by a noise characterized byD
50.25, A50.85. Each of these diagrams is represented
ing the same number of points~3800!.

The sampling velocity~number of points! was optimized
by taking 50 points for a period of the fundamental oscil
tion of the system, without forcing (e50) and for m
50.850. It is important to mention that in all the comput
results presented in this work, the first 5000 points of
integration process were eliminated in order to allow the s
tem to overcome the transients.

For the narrow window in the neighborhood of 0.85
where the dynamics of the noiseless system is regular,

FIG. 3. Phase portraits showing the noise induced transi
from chaotic behavior to period three dynamics for~a! m50.847,
~b! m50.850,~c! m50.857; left column, without noise; right col
umn, with noise characterized byD50.25,A50.85.
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noise with the same characteristics induces lower period
namics similar to the chaotic zones.

Besides the phase portraits, we tried to detect the no
induced effects by a Lyapunov exponent analysis. Stand
considerations on the optimization of the reliability of th
analysis@31,32#, and the relationship between the charact
istic frequencies and the time step in our computation, led
to consider that a sequence length of 3000 points is optim

The results are given in Table I, which presents the ma
mal ~average! Lyapunov exponent with noise and withou
noise for the chosen values of the control parameter.
noiseless values are definitely positive, indicating chaotic
namics. When random noise characterized byD50.25, A
50.85 is applied, the Lyapunov exponents become z
within the precision of the computation algorithm, indicatin
periodic dynamics.

The same result is reflected in the change of the Fou
spectra shown in Fig. 4. Here, we consider only the value
m in the middle of the interval (m50.850) because simila
change is characteristic for the whole interval. The spectr
on top of the figure~a! corresponds to the chaotic behavi
shown by the noiseless system. The second spectrum
the top~b! is characteristic of the system in the presence
random noise with parameters in the interval that indu
period three dynamics.

TABLE I. Noise-induced change of the Lyapunov exponent
three arbitrary values ofm, the same as in Fig. 3.

Lyapunov exp.

m50.847 Without noise 0.02260.015
With noise 0.01160.019

m50.850 Without noise 0.08560.041
With noise 0.00960.018

m50.857 Without noise 0.05160.018
With noise 0.01260.029

n

FIG. 4. Noise-induced changes of the Fourier spectra form
50.850: ~a! without noise; ~b! with noise characterized byD
50.25,A50.8 ~period three!; ~c! with noise forD50.25,A50.5
~period 332); ~d! with noise for D50.25,A50.35 ~period 3
322).
2-3
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We observe that the noise has the following effects
annihilates the parasitic frequency~and its harmonics! that
appears by the splitting of the forcing component, chan
the ratio of the amplitudes, reduces the amplitude of the c
otic background, and induces the generation of higher
quency harmonics.

It is interesting to observe that the noise in the range
parameters that brings the model into agreement with
experiment for values of the control parameterm aroundm
50.850 has no influence on the dynamics of the system
m outside this interval; the system is robust to noise outs
this interval.

IV. NOISE-INDUCED BIFURCATION SEQUENCE

Figure 5 presents a phase diagram showing the chang
the behavior of the system induced by the presence of no
The value of the control parameter is againm50.850.

For noise characterized by the values of the parameteD
and A in domain ~3!, the experimental behavior~period
three! is regained. In the domain denoted~6! on the figure,
period 332 is induced and for the parameters in doma
~12!, period 3322 is found.

The bifurcation sequence for period three is clearly illu
trated by the spectra in Fig. 4 going in the downward dir
tion. The second top spectrum,~b!, corresponds to period
three dynamics obtained for an added noise characterize
D50.25,A50.85. KeepingD constant and reducing th
noise rangeA, we obtain period 332 dynamics forA in the
neighborhood of 0.5 to which the third spectrum from top~c!
corresponds. Further reducingA, we identified period 3
322 in the neighborhood ofA50.35 with the characteristic
spectrum shown at the bottom of Fig. 4.

The next bifurcation could hardly be obtained in a ve
small interval ofA and the following bifurcations were im
possible to observe because the added noise become
small to influence the system dynamics.

Outside the shaded area in Fig. 5, chaotic dynamics
very high period is observed; a very low noise does not
fluence the behavior while a high noise considerably pertu
the system adding up to the already chaotic dynamics.

The noise level that generates the effects shown on Fi
is in a range of 10% of the amplitude of the sinusoidal p
turbation and in a range of 5% of the amplitude ofx12x3.

FIG. 5. Phase diagram showing the change in the dynamic
the system induced by the noise for the values ofD and A corre-
sponding to relevant situations.
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It is important to mention that the transition from one ty
of regular dynamics to the next is not as clearly defined
shown by the diagram. Between two neighboring zones th
is an interval of values of the noise range in which the s
tem goes almost periodically from one dynamics to the oth
This is easily observed if the integration procedure is carr
on for long enough@33#.

In Fig. 6, the transition from period 332 to 3322 and
back to period 332 is illustrated by details of the two phas
portraits at four times. By proper choice of the noise para
etersD andA we manage to obtain a situation where the tim
that the system persists in each of the two dynamics is
proximately equal to about 2500 points. The transition int
val looks like a very noisy period three and lasts for abo
the same time. This was achieved forD50.22 and A
50.455. The four situations shown in Fig. 5 correspond to
interval of about 2000 points centered on the following tim
~in number of points!: t(a)51350,t(b)56400,t(c)
511 350,t(d)516 400.

V. CONCLUSIONS

In the first three sections of the work it is demonstrat
that the addition of noise terms to the system of equati
modeling a double discharge plasma improves the mo
extending the agreement with experiment to the whole ra
of values of the experimental control parameter studied.

Particularly, we show that the added random noise w
certain characteristics reestablishes the agreement in a
main of the control parameter where the experiment sho
period three dynamics and the noiseless equations show
otic behavior, without destroying the agreement correspo
ing to other values of the control parameter. Clearly, the s
ation is equivalent to a control of chaos by random noise

We extended the study of this aspect by changing
characteristics of the added noise. Ranges of parame
were identified corresponding to dynamics of 332n type.
Unlike the suddenness of bifurcations caused by the va
tion of the control parameter, in the case of bifurcations
duced by noise variation there exists a small but defin

of
FIG. 6. Details of phase portraits showing the transition betw

neighboring dynamics:~a! and ~c! period 332; ~b! and ~d! period
3322. The noise parameters areD50.22,A50.455.
2-4
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range of noise parameters for which an almost period
transition from one stage of bifurcation to the next is taki
place.

This bifurcation sequence could not be obtained in exp
ment because, as seen from Fig. 5, higher bifurcation or
L.

D.

G.
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correspond to lower noise levels and we did not yet man
to reduce the intrinsic noise of the discharge system with
changing the other dynamics characteristics. If this could
achieved, the noise could be controlled by using an exte
noise generator.
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