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Control of chaos by random noise in a system of two coupled perturbed van der Pol oscillators
modeling an electrical discharge plasma
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The control of chaos in nonlinear systems by different methods is still a high interest topic particularly when
this is achieved by random noise as in this work. The change of chaotic dynamics into periodic dynamics
induced by random noise in a system of two coupled perturbed van der Pol oscillators and comparison with the
experimentally observed behavior of a double discharge plasma that it models is presented. Methods specific to
nonlinear analysis such as phase portraits, Lyapunov exponents, and Fourier spectra are used to demonstrate
the changeover from chaotic to regular dynamics induced by random noise. A phase diagram determines the
range of noise parameters corresponding to the lowest orders of an observed bifurcation sequefi2® of 3
type and particulars of the transitions are presented.
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[. INTRODUCTION tribution to the data of the intrinsic dynamics and of the
random noise is an extremely tricky problem. Even giving an
The presence of noise is a highly complicating aspect iranswer to the question: is the irregularityonperiodicity of
both the theoretical and experimental analysis of the dynarthe data due to nonlinear determinism or rather due to ran-
ics of nonlinear systems. The interplay between noise anfom inputs to the system or random fluctuations of the pa-
chaotic behavior is very intricate and sometimes, as in théameters is no trivial matter. _ _
case of 1f noise, the two notions could not be separated Various testing algorithms for discerning between the
even conceptually. nonlinearity and I|n<_aar stochastic behavior hgve been pro-
In theoretical studies on dynamical systems described b§@S€dl7—9]. Also, different methods of analysis have been
differential/difference equations, the effect of noise is rela- evised[10-14 aiming to replace noisy measurements by

tively easily studied because the behavior is obtaine&’etter values that contain less noise. From the previous con-
sideration, the noise appears as a nuisance to the dynamics

through computation with and without the noise terms. For hvsici . . i i
some particular situations, the addition of noise can hav ysicist. However, th|s_p0|nt of view hgs slightly changed
. ' uring the last decade since the pioneering work of Ott, Gre-
pre_dlctable results. Any effect that occurs at some WeII'bogi, and Yorkeg15] that stimulated considerable interest of
defined value of the control parameter will be smeared Oufo" -ontrol of chaos and synchronization by various pertur-
by the noise that manifests itself as small fluctuations in thg),tions applied to the system including random noise
control parameter, especially for observations of the attractqry o4,
characteristics on scales smaller than the noise [dv2]. In The present work is a study of the effect of random noise
particular, this limits the possibility of observing high bifur- on a system of two perturbed coupled van der Pol oscillators
cation orders in bifurcation sequendgs. If noise is present, modeling a double electrical discharge plasma. Comparison
then a system that is close but not yet in a crisis can b®etween the experimental data and the results of the ideal,
“bumped” into and out of the crisis region by the noigk5]. noiseless model is quite good for almost all the range of the
In intermittency, noise can change the time between burstsontrol parameter used in the stu®5] with the exception
by orders of magnitudgs]. of a small interval. The addition of noise terms to the ideal

The correlation dimensio@(R) calculated could be af- equations extends the agreement to the entire range of the
fected by the presence of noise. If the amplitude of noise igontrol parameter covered in this work.

o, then we expect the noise to dominate R o, whereR Subsequently, the study is extended to additional noise-
is the distance from a given point such that all the attractor isnduced dynamics consisting of the control of chaos for the
within a radiusR. Since noise is supposedly random, theparticular system of two perturbed coupled van der Pol os-
noise-dominated data will tend to spread out uniformly in acillators, mainly to an induced bifurcation sequence of 3
domain of the state space and we expect to find a correlatior 2" type. Details of the transition from one period to the
dimension equal to the state space dimension for small vakext are presented.

ues of R [1,2]. The noise tends to make the slope of the
InC(R) vs InR larger for small values oR.

In real nonlinear physical systems, the situation is still
more complicated. The dynamic behavior of the system is The experimental setup was presented in detail in Refs.
obtained by carrying out measurements of characteristic pd25,26. It consists of a system allowing simultaneous func-
rameters against a constant background of noise that hartiening of two electrical discharges sustained by separate
pers measurement and corrupts the data. Separating the cammltage sources. They are running in the same discharge tube

Il. EXPERIMENTAL STUDY
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filled with argon at low pressure. The anodes of the two

discharges are situated facing each other at a distance of a

few centimeters. They are biased one against the other by a

continuous voltage source whose voltddg, is considered

as the experimental control parameter. An additional cou-

pling is possible by connecting in series with the biasing

source a sinusoidal voltadé, with amplitude (5-10) % of 02 04 06 08 107

the continuous biasing. Without this forcing the discharge m

shows periodic dynamics with a fundamental frequency that ) o ,

slowly changes with changing of the control parameter. FIG. 1. Bifurcation diagram for the interanode current, modeled
The global behavior of the system as a function of the®y X1~ %s:

continuous biasing and in the presence of the sinusoidal sig-

nal with a frequency in the neighborhood of 2.5 times the The incorporated additional noise terms ddgé; and

free oscillation frequency shows intervals of regular and chap ¢, Hereg (i=1,2) are produced by a random noise gen-

otic dynamics as well as transitions to chaos by different a6y ysed to provide a random real number uniformly dis-

mechanisms. This behavior is correlated to the characteristi . . . . :
of the space charge structures such as double lafirs tFibuted in a prescribed interval whose magnitude will be

[27] denotedA and called “the noise range.” This number is mul-

It was observed that the position and the characteristics diP!iéd by @ constanD intended to set the maximum ampli-
one or more space charge structures generated in the intefgde of the noise and to give a measure to the standard de-
node space depend d#,,, on the discharge currents,l,,  Viation o. The correlation is ofé type, namely,&(t)&(t
and also on the gas pressype For certain values of the + 7)~A25(7).
amplitude and frequency &f., quasistationary plasma for- The study in the absence of noisB(=0D,=0), pre-
mations can appe28]. In this work, the amplitude ol is  sented in Ref[25], shows that computational reproducing of
kept constant so that it can be considered as generatingthe three experimental elements$) time series,(ii) phase
forcing regime. portraits, and(iii) fast Fourier-transform spectra requires a

EXperimental inveStigaﬂonS of the CUrrent-VOltage Charanery precise tuning of the model control parameter'rhe
teristics,| vs Uy, correlated with plasma potential and light piot of the values ofn vs the corresponding values of the
intensity distributions, which reveal the formation of DL, are -ontinuous biasing potenti&l ,, shows a linear dependence.

extensively presented in Ref28,29. It is also shown that  1iq result was interpreted as demonstration of the validity
for values of a DL potential drop larger than the ionization of the model

potential of the working gas, the structure becomes unstable However, in a certain interval of values of the continuous

an?nt?kﬁscv%gfkncvga;rgsé:%(jtﬁs Iir(l)ﬂslj:g:]ac;{:aogfs ﬁoise on phenom-b lasing _pc_)tentiql, the experimental results were i.n ap.par‘.ent

ena taking place in the interanode space in the presence S?nf[radlctmn with the results.of the mo_del. T_h|s S|Fuat|on IS

both the continuous biasing and the sinusoidal forcing. easn'y understood on the basis of the blfurcat!on @agram for
the interanode current modeled bxy—x5. This diagram,

IIl. COMPUTATION MODEL shown in Fig. 1, represents the global dynamics of the sys-

] tem without noise.
In Ref. [25] we proposed a model based on physical ar- |, the region enclosed within an oval in the figure, corre-

guments similar to those considered in R&9]. The two g 5nding to anu ,, interval of 0.5 V around 33 V, experimen-
discharge plasmas that generate space charge structures I data show no discontinuity in the period three dynamics.

the inte_ranode space are gonsidered as in_dependent van %hlow up of this region of the bifurcation diagram is shown
Pol oscillators with a special type of coupling and strength.

determined by the control parameter denotednas in Fig. 2.

The biasing dc and ac potentials are modeled as separate The noiseless system of equations represents an idealized
terms. The periodic perturbation of amplitugeand fre- situation. To make it more realistic, we considered that the

quency g is introduced in the conventional way. Conse-N0iS€, always present in an electrical system, has to be re-
quently, we consider the dynamics of the following five flected by the model. The origin of noise is related to the

equations system that differ from that given in R&5] by
the presence of the noise terms:

X1 - Xs(arb. units)

X1=Xp+ Mxy+ D1,

Xo= —C(X2—1)Xp— X, + € COSX5+ MX,y + (M—N)Xg+qm,

X 1= Xa(arb. units)

Xg=Xg+ —MX+ D5y,

-
s

Xg=— f(x5— 1)X4— X3— € COSX5— MX,— (M—N)Xy,
) FIG. 2. A blowup of the region of the bifurcation diagram en-
X5=2mg. closed within an oval in Fig. 1.
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TABLE |. Noise-induced change of the Lyapunov exponent for
three arbitrary values ah, the same as in Fig. 3.

Lyapunov exp.

m=0.847 Without noise 0.0220.015
With noise 0.011#0.019
m=0.850 Wthout noise 0.08%0.041
With noise 0.009:0.018
m=0.857 Wthout noise 0.05%0.018
With noise 0.012-0.029

noise with the same characteristics induces lower period dy-
namics similar to the chaotic zones.

Besides the phase portraits, we tried to detect the noise-
induced effects by a Lyapunov exponent analysis. Standard
considerations on the optimization of the reliability of this
FIG. 3. Phase portraits showing the noise induced transitiof"@lysis|31,32, and the relationship between the character-

from chaotic behavior to period three dynamics far m=0.847,  Istic frequencies and the time step in our com_puta_tion, I_ed us
(b) m=0.850,(c) m=0.857; left column, without noise; right col- t0 consider that a sequence length of 3000 points is optimum.

umn, with noise characterized y=0.25A=0.85. The results are given in Table I, which presents the maxi-
. . ~ mal (averagg¢ Lyapunov exponent with noise and without
fluctuations generated by the thermal motion of the ambienioise for the chosen values of the control parameter. The

electrons and iong30]. noiseless values are definitely positive, indicating chaotic dy-
In this study we consider only the case of identical noisenamics. When random noise characterizedby 0.25, A
functions,D &, =D>&,. =0.85 is applied, the Lyapunov exponents become zero

For convenient values of the noise paramef@randA,  within the precision of the computation algorithm, indicating
we demonstrate that, for any value wfin the interval of  periodic dynamics.
chaotic dynamics around 0.850, the irregular dynamics is The same result is reflected in the change of the Fourier
transformed into period three dynamics. spectra shown in Fig. 4. Here, we consider only the value of
In this way, the noise rehabilitates the model making itm in the middle of the intervalro=0.850) because similar
generate an output in agreement with the experiment for thehange is characteristic for the whole interval. The spectrum
whole range of control parameter considered. The values ain top of the figurga) corresponds to the chaotic behavior
the noise parameters in the corresponding interval can bshown by the noiseless system. The second spectrum from
interpreted as a measure of the real noise present in the ethe top(b) is characteristic of the system in the presence of
perimental system. random noise with parameters in the interval that induces
The analysis of the system dynamics is carried out usingeriod three dynamics.
the following methods: phase portrait, Lyapunov exponents,
and Fourier spectrum.

The noise-induced transition from chaotic behavior to pe- ZE M[\_M @
riod three dynamics is illustrated in Fig. 3, which presents i2 o
phase portraits for three arbitrary values of the control pa- %8w om0  om om0
rameter in the chaotic region arouma=0.850, namelym ;ZE .
=0.847(a), m=0.850(b), andn=0.857(c). The graphs on z ?;gMUL)\ . .
the left correspond to the noiseless behayidraos or very 8w om  omx  o®  om 0w
high period$ and the graphs on the right show the period 292
three dynamics induced by a noise characterized Dby Eégmm ey tel
=0.25, A=0.85. Each of these diagrams is represented us- e T T T R
ing the same number of poin(8800. 98

The sampling velocitynumber of pointswas optimized EH MM (d
by taking 50 points for a period of the fundamental oscilla- o WA s

=]
[=)

. . . 0.02 004 006 0.08 a.10
tion of the system, without forcinge=0) and for m Frequency (arb.units)

=0.850. It is important to mention that in all the computed

results presented in this work, the first 5000 points of the FIG. 4. Noise-induced changes of the Fourier spectranfor

integration process were eliminated in order to allow the sys=0.850: (a) without noise; (b) with noise characterized bjp

tem to overcome the transients. =0.25,A=0.8 (period threg (c) with noise forD=0.25,A=0.5
For the narrow window in the neighborhood of 0.853 (period 3x2); (d) with noise for D=0.25,A=0.35 (period 3

where the dynamics of the noiseless system is regular, the2?).
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FIG. 5. Phase diagram showing the change in the dynamics of
the system induced by the noise for the valueadind A corre- FIG. 6. Details of phase portraits showing the transition between
sponding to relevant situations. neighboring dynamicsa) and (c) period 3% 2; (b) and (d) period

3X%22. The noise parameters abe=0.22,A=0.455.

We observe that the noise has the following effects: it

annihilates the parasitic frequen(:arjd its harmonigsthat It is important to mention that the transition from one type
appears by the splitting of the forcing component, changes

the ratio of the amplitudes, reduces the amplitude of the chaQf regular dynamics to the next is not as clearly defined as

otic background, and induces the generation of higher fre_—ShOWn by the diagram. Between two neighboring zones there

quency harmonics is an interval of values of the noise range in which the sys-

It is interesting to observe that the noise in the range of€M 90€s almost periodically from one dynamics to the other.
parameters that brings the model into agreement with th&his is easily observed if the integration procedure is carried
experiment for values of the control parametearoundm  ©n for long enougli33].

—0.850 has no influence on the dynamics of the system for In Fig. 6, the transition from period 82 to 3x2? and
m outside this interval; the system is robust to noise outsidd®ack to period X 2 is illustrated by details of the two phase

this interval. portraits at four times. By proper choice of the noise param-
etersD andA we manage to obtain a situation where the time
IV. NOISE-INDUCED BIFURCATION SEQUENCE that the system persists in each of the two dynamics is ap-

) ) ) proximately equal to about 2500 points. The transition inter-

Figure 5 presents a phase diagram showing the change {i| looks like a very noisy period three and lasts for about
the behavior of the system induced by the presence of nois@he same time. This was achieved fer=0.22 and A
The value of the control parameter is agair-0.850. =0.455. The four situations shown in Fig. 5 correspond to an

For noise characterized by the values of the parameers jaa| of about 2000 points centered on the following times
and A in domain (3), the experimental behaviofperiod (in number of points t(a)=1350,t(b)=6400,t(c)
three is regained. In the domain denoté&) on the figure, —11350,t(d) = 16 400 ' '
period 3xX2 is induced and for the parameters in domain ’ '
(12), period 3x 22 is found.

The bifurcation sequence for period three is clearly illus-
trated by the spectra in Fig. 4 going in the downward direc- V. CONCLUSIONS
tion. The second top spectrur(h), corresponds to period |, the first three sections of the work it is demonstrated

three dynamics obtained for an added noise characterized By iha addition of noise terms to the system of equations
D=0.25,A=0.85. KeepingD constant and reducing the

noise range?\, we obtain period X2 dynamics forA in the
neighborhood of 0.5 to which the third spectrum from ¢op
corresponds. Further reducing, we identified period 3

x2? in the neighborhood aA=0.35 with the characteristic certain characteristics reestablishes the agreement in a do-
spectrum shown at the bottom of Fig. 4. 9

The next bifurcation could hardly be obtained in a verymai_n of the control'parameter Where the expgriment shows
small interval ofA and the following bifurcations were im-Period three dynamics and the noiseless equations show cha-
possible to observe because the added noise becomes B behavior, without destroying the agreement correspond-
small to influence the system dynamics. ing to_other yalues of the control parameter. Clearly, thg situ-

Outside the shaded area in Fig. 5, chaotic dynamics oftion is equivalent to a control of chaos by random noise.
very high period is observed; a very low noise does not in- We extended the study of this aspect by changing the
fluence the behavior while a high noise considerably perturbgharacteristics of the added noise. Ranges of parameters
the system adding up to the already chaotic dynamics. ~ were identified corresponding to dynamics ok 3" type.

The noise level that generates the effects shown on Fig. Bnlike the suddenness of bifurcations caused by the varia-
is in a range of 10% of the amplitude of the sinusoidal pertion of the control parameter, in the case of bifurcations in-
turbation and in a range of 5% of the amplitudexef-X5. duced by noise variation there exists a small but definite

modeling a double discharge plasma improves the model,

extending the agreement with experiment to the whole range

of values of the experimental control parameter studied.
Particularly, we show that the added random noise with
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range of noise parameters for which an almost periodicatorrespond to lower noise levels and we did not yet manage
transition from one stage of bifurcation to the next is takingto reduce the intrinsic noise of the discharge system without
place. changing the other dynamics characteristics. If this could be

This bifurcation sequence could not be obtained in experiachieved, the noise could be controlled by using an external
ment because, as seen from Fig. 5, higher bifurcation ordemsoise generator.
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