

Universitatea Nationala de Știință și Tehnologie POLITEHNICA București (UNST) Departamentul de FIZICĂ

General physics competition program for engineering students PHYSICS II

Atomic and molecular physics

Fundamental notions of atom and molecule physics

Electronic structure of atoms (characteristic quantum numbers); the periodic table of the elements Atomic transitions - selection rules. The atomic spectrum

Elements of molecular structure; molecular spectrum

Raman effect

Optical spectroscopy - experimental approach

X-ray diffraction. X-ray spectrometry.

De Broglie hypothesis (particle wave duality)

Fundamental experiments indicating the particle-wave duality of the material world. (Davisson-Germer, GP Thomson). The Compton effect in the case of an (ultra)relativistic electron

2. Black body radiation

Spectral radiance of surfaces (black body model).

Stefan-Boltzmann law.

Volumetric spectral density of radiation.

Wien's displacement law

3. Quantum mechanics

The wave function – the Born interpretation

Quantum mechanics postulates

The Schrödinger equation; stationary states - the timeless Schrödinger equation: the problem of vectors and eigenvalues

Current density probability

Observables and operators in quantum mechanics

Orbital angular momentum, spin angular momentum, total angular momentum, Clebsch-Gordan coefficients, corresponding magnetic moments (spin-orbit interaction), Lande factor

Simultaneous observables, switching relations - interpretation. Heisenberg uncertainty relations Elementary applications: free particle, (infinite and finite) potential well, potential step and barrier

Schrödinger equation for the hydrogen atom: spherical symmetry, wave function: radial component and angular component - orbitals

The Hilbert space of quantum states

The de Broglie wave packet

The quantum harmonic oscillator

Ehrenfest theorems – the classical limit

Approximation methods in quantum mechanics (stationary and time-dependent perturbations, variational method, WKB method)

Atom in external electric and magnetic fields, Stark effect, Zeeman effect.

Quantum systems of several identical particles - Pauli's principle

Fermi-Dirac and Bose-Einstein quantum statistics; applications

Lasers - the principle of operation; classification; Characteristics of laser radiation

Quantum theory of scattering – scattering amplitude

Elements of relativistic quantum mechanics (Dirac and Klein-Gordon equations)

Fundamentals of quantum computing.

Universitatea Nationala de Știință și Tehnologie POLITEHNICA București (UNST) Departamentul de FIZICĂ

4. Nuclear physics.

Noțiuni fundamentale. Structura neutrono-protonică a nucleului Specii nucleare; harta Segre a nuclizilor Dimensiuni nucleare Defectul de masă: energia de legătură, originea energiei nucleare Forțe nucleare – proprietăți; Stări cuantice nucleare; spectre de excitație – exemple Modele nucleare (modelul în pături, modele colective) Dezintegrări nucleare – clasificare, legi de conservare Acceleratorii de particule – principiu de funcționare, clasificare

5. Nuclear reactions- conservation laws.

Nuclear fission and fusion reactions; Nuclear fission and fusion reactors. Fundamentals of plasma physics.

6. Astrophysics.

References:

1. Physics university courses

2. Physics problems given at the county, national and international school Olympiads and other Physics contests.