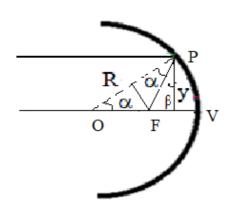


Selected issues:		

NAME AND SURNAME	
UNIVERSITY	

GENERAL PHYSICS COMPETITION FOR ENGINEERING STUDENTS "ION I. AGARBICEANU"

XI Edition 2023 13 May 2023


Experimental test, Physical Section 2,

Determination of the radius of curvature of a cylindrical mirror

Scale:

Schematic presentation of the device

5p

Linearization of the equation

10p

From the figure above it can be seen that $\sqrt{1-\frac{y^2}{R^2}}=\cos\alpha$ again, from the figure above we get . Entering this relationship into the formula:

$$f = \frac{R}{2} \left(2 - \frac{1}{\sqrt{1 - \frac{y^2}{R^2}}} \right)$$

Results

$$f = R - y \cdot \cos\beta$$

where $\cos\beta$ is approximately constant

Table

Item No.	y (mm)	f(mm)	
1	0		
Graphic representa	f = f(y) and graphical est	imate of R from the intersection with

the axis of f 5p

Determination of spherical mirror radius

5p

5