

Selected issues:

NAME AND SURNAME

UNIVERSITY

.....

GENERAL PHYSICS COMPETITION FOR ENGINEERING STUDENTS "ION I. AGARBICEANU"

XI Edition 2023 13 May 2023

Experimental test, Physical Section 2,

Determination of the radius of curvature of a cylindrical mirror

Scale:

Schematic presentation of the device

5p

Linearization of the equation

From the figure above it can be seen that $\sqrt{1 - \frac{y^2}{R^2}} = \cos \alpha$ again, from the figure above we get . Entering this relationship into the formula:

$$f = \frac{R}{2} \left(2 - \frac{1}{\sqrt{1 - \frac{y^2}{R^2}}} \right)$$

Results

$$f = R - y \cdot \cos\beta$$

where $\cos\beta$ is approximately constant

Table

Item No.	y (mm)	f(mm)
1	0	

Graphic representation f = f(y) and graphical estimate of **R** from the intersection with the axis of **f** 5p

Determination of spherical mirror radius

5p

5

10p